
GUIDE

STORMSHIELD LOG SUPERVISOR

SEARCH QUERY LANGUAGE
GUIDE
Version 2

Document last updated: July 4, 2024

Reference: sls-en_search_query_language_gde

Table of contents
Change log 5

Getting started 6

Simple Search 7
Single word 7
Multiple words 7
Phrases 7
Field values 7
Logical operators 8

And 8
Or 8
Not 8

Parentheses 9
Wildcards 9
Step 9
Lower and Upper 10
Time Functions 10

second 10
minute 10
hour 11
day 11
day of week 11
month 11

List 12
Table 12

Aggregators 14
chart 14
timechart 16
Available Aggregators 17

avg() 17
count() 17
distinct_count() 17
distinct_list() 18
list() 19
max() and min() 20
sum() 20
var() 21

One-to-One Commands 22
rex 22
norm 23
fields 23
rename 24

Process Commands 25
AsciiConverter 25
Clean Char 25
Codec 26

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2

Page 2/60 sls-en_search_query_language_gde - 07/04/2024

Compare 26
Compare Network 27
Count Char 27
CountOf 28
Current Time 29
DatetimeDiff 30
Difference 30
DNS Cleanup 31
DNS Process 31
Domain Lookup 32
Entropy 32
Eval 33
Experimental Median Quartile Quantile 33
GEOIP 34
Grok 35
InRange 36
IP Lookup 36
JQ Parser 37
JSON Expand 37
JSON Parser 38
ListLength 40
ListPercentile 41
Next 41
Percentile 42
Process lookup 42
Regex 42
SortList 43
String Concat 43
Summation 43
toList 44
toTable 44
WhoIsLookup 45

Filtering Commands 46
search 46
filter 46
latest 47
order by 47
limit <number> 47

Pattern Finding 49
Single Stream 49
Multiple Streams 50

Left Join 50
Right Join 51
Join 51
Followed by 51

Chaining of commands 53

Additional Notes 54
Process or Count 54

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2

Page 3/60 sls-en_search_query_language_gde - 07/04/2024

Conditional Expression 54
Forward Slash Expression 54
norm 54
timechart 54
Capturing normalized field values 54
Grok Patterns 55

Further reading 59

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2

Page 4/60 sls-en_search_query_language_gde - 07/04/2024

Change log

Date Description

July 4, 2024 New document

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
CHANGE LOG

Page 5/60 sls-en_search_query_language_gde - 07/04/2024

Getting started
Welcome to the SLS version 2 Search Query Language Guide.

SLS's Query Language is extensive, intuitive, and user-friendly. It covers all the search
commands, functions, arguments, and clauses. You can search the log messages in various
formats depending on the query you use.

SLS also supports chaining of commands and multi-line queries. Use a pipe (|) to chain the
commands and press Shift + Enter to add a new line in the query. The search keywords are not
case-sensitive.

 NOTE
The examples of some search queries provided in this section may not yield any result as the
relevant logs may not be available in your system.

This guide provides the following information that you need to use the SLS Query Language:

l Learn about the types of simple queries to familiarize yourself with the SLS Query
Language.

l Learn how to aggregate fields with chart and timechart commands.
l Learn about the one-to-one commands.
l Learn about the process commands.
l Learn how to filter the search results.
l Learn how to find one or multiple streams and patterns of data to correlate a particular

event.
l Learn how to chain multiple commands into a single query.

In this document, Stormshield Log Supervisor is referred to in its short form SLS. Images used in
this document are from the partner vendor’s (Logpoint) software program. In your SLS, the
graphics may vary but user experience is exactly the same.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
GETTING STARTED

Page 6/60 sls-en_search_query_language_gde - 07/04/2024

Simple Search
You can use the following types of simple queries to familiarize yourself with the SLS Query
Language.

Single word

Single word search is the most basic search that you can run in SLS. Enter a single word in the
Query Bar to retrieve the logs containing the word.

login

This query searches for all the logs containing the word login in the message.

Multiple words

Searching with multiple words lets you search the original logs using a combination of words.
For searches with multiple words, only the logs containing all the words are displayed.

 NOTE
The order of the words is not important.

account locked

This query searches for all the logs containing both the search terms account and locked in the
message.

Phrases

Phrase Search lets you search the exact phrase in the logs. You must enclose the words inside
double-quotes (" ").

 NOTE
The order of the words is important.

"account locked"

This query searches for all the logs containing the exact phrase account locked.

Field values

The normalized logs contain information in key-value pairs. You can use these pairs directly in
the log search. To see all the logs from the user Bob, use the following query:

user = Bob

This query searches for all the logs from the user Bob.

device_ip = 192.168.2.1

This query searches for all the logs coming from the device with the IP Address 192.168.2.1.

You can combine multiple field value pairs as:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 7/60 sls-en_search_query_language_gde - 07/04/2024

device_ip = 192.168.2.1 sig_id = 10051

You can also combine this with a simple query as:

login device_ip = 192.168.2.1 sig_id = 10051

Logical operators

You can use various keywords to perform logical operations in the SLS search query.

And

Use the logical operator and to search for the slogs containing both the specified parameters.

login and successful

This query searches for all the messages containing the word login and the word successful.

The and operator can also be used for key-value search queries as follows:

login and device_ip=192.168.2.2

Or

Use the logical operator or to search for the logs containing either of the specified parameters.

login or logout

This query searches for all the messages containing either the word login or the word logout.

This operator can also be used with the key-value search query as follows:

device_ip = 192.168.2.1 or device_ip = 127.0.0.1

Not

You can use the hyphen (-) symbol for the logical negation in your searches.

login -Bob

This query searches for the log messages containing the word login but not the word Bob.

-device_ip = 192.168.2.243

This query returns the logs containing all the device_ips except 192.168.2.243.

 NOTE

l While searching with field-names, you can also use != and NOT to denote negation.
device_ip != 192.168.2.243

NOT device_ip = 192.168.2.243

l By default, the or operator binds stronger than the and operator. When performing the
login or logout and MSWinEventLog, SLS returns the log messages containing either
login or logout with MsWinEventLog.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 8/60 sls-en_search_query_language_gde - 07/04/2024

Parentheses

In SLS, the or operator has a higher precedence by default. You can use parentheses to override
the default binding behavior when using the logical operators in the search query.

"login failed" or (denied and locked)

This query returns the log messages containing login failed or both deniedandlocked.

Wildcards

You can use wildcards as replacements for a part of the query string. Use the following
characters as wildcards:

l ? - Replacement for single character.
l * - Replacement for multiple characters.

If you want all the log messages containing the word login or logon, use the following:

log?n

 NOTE
This query also searches for the log messages containing other variations such as logan, logbn,
and logcn.

log*

This query returns the logs containing the words starting with log such as sls, logout, and login.

 NOTE
You can also use Wildcards while forming a search query with field names. To get all the
usernames that end in t, use the following. username = *t

Step

You can use the step function to group fields. To see the log messages with destination_port in
steps of 100 as follows:

destination_port count

0 - 100 50

100 - 200 32

step(destination_port,100) = 0 | chart count() by destination_port

This query searches for all the log messages containing the field destination_port, and groups
them in steps of 100. The value at the end of the query specifies the starting value of the
destination_port for grouping.

 NOTE
You can use the step to group using multiple field names.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 9/60 sls-en_search_query_language_gde - 07/04/2024

Lower and Upper

You can change type-case of your field values. Use the lower function to change the values to
lower case. Similarly, use the upper function to change the field values to upper case. The
upper and lower functions change the type-case of the values to the same case so that you can
observe consistent results.

Use the upper and lower functions with chart and timechart commands.

| chart count() by upper(action)

| timechart count() by lower(action)

Time Functions

The Time Functions extract specied values from a time-based field. The following time functions
are supported in the Simple Search Query:

l second
l minute
l hour
l day
l day of week
l month

The arguments taken by these functions are numeric. These functions parse Unix Timestamps.

In SLS, col_ts and log_ts carry Unix timestamps. However, you can create your own fields which
contain the Unix timestamps using the rex or norm commands.

second

You can use the second function to search for the logs generated or collected in seconds.

The generic syntax for second is:

second(field) = value

The value for second ranges from 0 to 59.

second(log_ts) = 23

This query searches for the logs generated during the twenty third second.

minute

You can use the minute function to search for the logs generated or collected in minutes. The
values for the minute range from 0 to 59.

minute(col_ts) = 2

This query searches for the logs generated during the second minute.

minute() can also be used in aggregation functions.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 10/60 sls-en_search_query_language_gde - 07/04/2024

hour

You can use the hour function to search for the logs generated or collected in hours. The values
for the hour range from 1 to 24.

Example:

hour(col_ts) = 1

This query displays the logs generated during the first hour.

day

You can use the day function to search for the logs generated or collected in days.

Example:

day(col_ts) = 4

This query displays the logs of the 4th day.

day of week

You can use the day of week function to search the logs for the specific day of the week. The
value for day_of_week ranges from 1 (Sunday) to 7 (Saturday).

Example:

day_of_week(col_ts) = 7 OR day_of_week(col_ts) = 1

This query displays the logs in off days, i.e, Saturday and Sunday.

month

You can use the month function to search the logs generated or collected in months. The value
of month ranges from 1 (January) to 12 (December).

Example:

month(col_ts) = 6

This query displays the log activity for June.

 NOTE
You can use the relational operators (>, <, = and !=) with the time commands to create a sensible
time-range for your search queries.

The following table summarizes the time functions:

Time functions Working Examples Value Range

second second(cpl_ts) = 20 0 - 59

minute minute(col_ts) = 18 0 - 59

hour hour(col_ts) = 6 0 - 23

day day(col_ts) = 14 1 - 31

day_of_week day_of_week(col_ts) = 5 1 - 7 (Sun - Sat)

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 11/60 sls-en_search_query_language_gde - 07/04/2024

Time functions Working Examples Value Range

month month(col_ts) = 11 1 - 12 (Jan - Dec)

List

You can create a static list with a number of values, and use this list in the search query instead
of keying in all the values.

For example, if you create a list EMPLOYEES with the names of all the employees in a company,
you can check whether a single user has logged into the system using the following query.

user in EMPLOYEES action=login

The search query matches the value of the field user with all the values in the EMPLOYEES list.

 IMPORTANT
The name of the list must be provided in uppercase.

You can also use an Inline List while executing a search query.

The generic syntax for inline list is:

field in [value1, value2,....]

which is equivalent to field = value1 OR field = value2.

Example:

source_port in [21, 53, 88, 123]

In cases where the values have multiple words in the inline List, use quotation marks as shown
below.

event in ["Process completed", "Process accomplished"]

Table

Tables are external file-formats which contain the information you may choose to associate
with a search result. The file formats supported for the tables are CSV, ODBC, LDAP, and Threat
Intelligence. The information obtained is prefixed with the table alias in the log messages.

For example:

IPList is a CSV table containing fields such as Address, IP, Name, and SN. To view the content of
this external CSV table, use the following query:

table "IPList"

The following content is displayed:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 12/60 sls-en_search_query_language_gde - 07/04/2024

To view all student entries in a table called studentResult, which contains student_name,
student_roll, and percentage as fields, use:

table "studentResult"

To search for all the student entries in the table studentResult who have passed with
distinction:

table "studentResult" percentage >= 80

To search for all the student entries in the table studentResult who have failed:

table "studentResult" percentage < 40

 NOTE
In the Data Privacy Module enabled systems, when you use the table query, you can only see
the values of the search results in the encrypted form. You cannot request a decryption for these
values.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
SIMPLE SEARCH

Page 13/60 sls-en_search_query_language_gde - 07/04/2024

Aggregators
Aggregators are used with chart and timechart to aggregate fields. The search results can be
formatted using fields, chart, or timechart commands.

l An aggregator displays 40 search results by default.
l Aggregators have an internal limit of 500K results by default. A single aggregator does not

forward more than 500K results to subsequent aggregators or process commands. Use the
:ref:limit command to set a higher limit of results to forward.

l Queries using an aggregator that results in large groupings can result in incomplete search
results. To get complete results, use the :ref:order by to sort the search results in ascending
order. There are also audit logs that you can use to check or confirm the results.

l Using free text queries within an aggregator results in raw log processing, a resource heavy
operation. Only use free text within an aggregator when absolutely necessary.

chart

With chart command, you get log messages in a chart form. If you want to see all the messages
containing login and group them by device_ip, use the following query.

login device_ip = * | chart count() by device_ip

This query searches for all the log messages containing the word login, and groups them by
device_ip. It then displays the number of log messages for each device_ip.

You can also count by multiple fields. The log message count is then displayed for each field.

login | chart count() by destination_address, destination_port

In this case, the count of the log messages for every combination of destination_address and
destination_port is grouped and the corresponding count is shown.

You can use other aggregation functions such as max and min in place of count.

connection | chart max(datasize) by source_address

datasize=*| chart max(datasize) as mx, min(datasize) as mn, sum(datasize)
as sm by source_address limit 15

You can also display the chart in different forms such as Column, Bar, Line and Area.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 14/60 sls-en_search_query_language_gde - 07/04/2024

You can also modify aggregation functions as follows:

object = connection | chart count(action=permitted) by source_address

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 15/60 sls-en_search_query_language_gde - 07/04/2024

In this query, only the log messages containing action=permitted are counted. You can write
the same query as:

action = permitted object = connection | chart count() by source_address

Multiple counts or other aggregators can be used in a single query string.

object = connection | chart count(action=permitted), count(action=blocked)
by source_address

This query displays two columns. The first is the count of the connections with the permitted
action and the second is the count of blocked actions.

timechart

You can use timechart to chart log messages as a time series data. It first displays logs
according to the time they were collected or generated. Then, it returns the log results according
to the collection time stamp (col_ts) or log generation time (log_ts).

The terms log_ts and col_ts have different functions.

log_ts col_ts

Denotes the time present in log messages. Denotes the time when SLS collected the log.

For example you can timechart all the messages with login shown below.

login | timechart count()

This plots the count of all the messages containing the word login into a graph with the
horizontal axis as time. The total time-span is the time selected for the search query.

| timechart on log_ts count()

This query plots the count of the logs based on the log_ts field.

You can also use the timechart command to plot the data on a fixed time-interval. To have a
timechart with bars for every 20 minutes, use the following query:

login | timechart count() every 20 minutes

You can use every x minutes, every x hours, or every x days with the timechart.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 16/60 sls-en_search_query_language_gde - 07/04/2024

 NOTE
When the limit of timechart() is not specified, the number of bars of the timechart depends on
the nature of the query.

l The number is always equal to 30 if the time-range is less than 30 units. For example,
if you provide a time range of 10 minutes SLS displays 30 bars in the span of 20
seconds.

l If the time-range is greater than 30 units, the number of bars is equal to the time-range.
This holds true until the upper limit of the number of bars is reached, which is 59.

l There are also some special cases for the number of graphs. The number of bars is
equal to the number of seconds specified and the time span of 1 day displays 24 bars
in the span of one hour.

Available Aggregators

Aggregators are used with the chart and the timechart commands by joining them with the |
symbol.

avg()

You can use avg() to calculate the average of all the values of the specified field.

Example:

| chart count(), avg(response_time, response_time=*)

This query calculates the average response_time.

count()

You can use count to get the total number of logs in the search results.

Example:

| chart count()

This query displays the total number of log messages in the search results.

login | chart count() by device_ip

This query searches for all the log messages containing the word login. It then groups the logs
by their device_ips and shows the count of the log messages for each of the Device IP.

You can also give filters to the count() as shown below.

login | chart count(event_id = 528) by device_ip

This query looks for all the log messages containing the word login. It then groups them by their
device_ip s and shows the count of the messages containing the field value event_id = 528.

distinct_count()

You can use distinct_count() to get the number of distinct count of the object.

Example:

| chart distinct_count(destination_port) by destination_address

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 17/60 sls-en_search_query_language_gde - 07/04/2024

In this case, though different ports may have multiple counts, distinct_count() returns the count
of the distinct ports for every destination address.

If the search results for a particular destination address had the following data:

port count

21 20

25 30

901 15

The result for the distinct_count() is 3 for each of the ports 21, 25 and 901. However, the result
of the count() is 65.

distinct_list()

You can use distinct_list() to return the list of all the distinct values of the field.

Example:

To view all the distinct values of the field action in the system, you can use the following query:

| chart distinct_list(action)

You can use a grouping parameter to group the distinct list.

Example:

| chart distinct_list(action) as actions by user

This query returns the list of every distinct value of the action field in the actions column
grouped by the grouping parameter user. You can use this example to view all the actions
performed and machines used by every user in your system.

You can also use this aggregators with other aggregation commands.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 18/60 sls-en_search_query_language_gde - 07/04/2024

Example:

user=Jolly | chart distinct_list(action) as actions, distinct_count
(action) as actions_count by user

This query returns the list of all the distinct actions with their counts for the user Jolly.

list()

list() takes a field as a parameter and returns the field values as a list in the search result. The
duplicate field values are also included in the list.

Syntax:

| chart list (field name) as string

| timechart list (field name) as string

Example:

| chart list (actual_mps) as number

This query gives the list of the actual_mps field values and returns the list in the number field.

Example:

| chart list (action) as actions by user

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 19/60 sls-en_search_query_language_gde - 07/04/2024

This query gives the list of the action field values grouped by user grouping parameter and
returns the list in the actions field.

max() and min()

These aggregators can be used to find the maximum or minimum value of the specified field.

Example:

| chart max(severity) by device_ip

This query displays the maximum severity value in each of the device_ip.

Example:

login | chart count(), max(col_ts) by device_ip, col_type

This query looks for all the log messages containing the word login. Then, it groups the search
results by their device_ips and the col_type and shows the count of the log messages and the
latest col_ts for each of the groups.

The max() and min() also support filter expressions as:

| chart max(severity, severity < 5)

This query shows the maximum severity that is less than 5.

sum()

You can use the sum() to sum the values of the specified fields.

Example:

| chart sum(datasize) by device_ip

This query displays the sum of all the datasize fields for each device_ip.

You can also give filters to the sum() function.

Example:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 20/60 sls-en_search_query_language_gde - 07/04/2024

| chart sum(datasize, datasize > 500)

This query only sums a datasize if it is greater than 500. The expression can be any valid query
string but must not contain any view modifiers.

var()

You can use var() to calculate the variance of the field values. Variance describes how far the
values are spread out from the mean value.

Execute the following query to visualize how the data fluctuates around the average value.

severity = * | chart count(),avg(severity),var(severity) by device_ip

 NOTE
You can use +, -, *, /, and ^ to add, subtract, multiply, divide, and to raise the power in the min(),
max(), sum(), avg(), and var() functions.

Example:

avg(field1/field2^2+field3)

 IMPORTANT
When using avg(), and min(), it is good to use a filter to discard log messages not containing the
specified fields.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
AGGREGATORS

Page 21/60 sls-en_search_query_language_gde - 07/04/2024

One-to-One Commands
The One-to-one commands take one value as input and provide one output.

For example, you can use the rex and the norm commands to extract specific parts of the log
messages into an ad-hoc field name. This is equivalent to normalizing log messages during the
search. However, the extracted values are not saved.

The rex and norm commands do not filter the log messages. They list all the log messages
returned by the query and add the specified ad-hoc key-value pairs if possible.

 IMPORTANT
Using the rex and norm commands or the msg field on large volume of logs may severely impact
system performance. If a field you are processing already contains the required information and
only needs further processing, we recommend you use norm on or rex on instead.

rex

You can use the rex command to recognize regex patterns in the re2 format. The extracted
variable is retained only for the current search scope. The result also shows the log messages
that are not matched by the rex expression.

Example Log:

Oct 15 20:33:02 WIN-J2OVISWBB31.immuneaps.nfsserver.com MSWinEventLog 1
Security 169978 Sat Oct 15 20:33:01 2011 5156 Microsoft-Windows-Security-
Auditing N/A N/A Success Audit WIN-J2OVISWBB31.immuneaps.nfsserver.com
Filtering Platform Connection The Windows Filtering Platform has allowed a
connection. Application Information: Process ID: 4 Application Name:
System Network Information: Direction: Inbound Source Address:
192.168.2.255 Source Port: 138 Destination Address: 192.168.2.221
Destination Port: 138 Protocol: 17 Filter Information: Filter Run-Time ID:
67524 Layer Name: Receive/Accept Layer Run-Time ID: 44 169765

You can use the rex command to extract the protocol id into a field protocol_id with the following
syntax:-

| rex Protocol:\s*(?P<protocol_id>\d+)

The query format is similar to the following:

| rex any regular expression:\s+(?P<field_name>expression to capture to
field)

 IMPORTANT
The (?P< >) expression is part of the rex syntax to specify the field name.

You can also extract multiple fields from a single rex operation as shown below.

| rex Source Address:\s*(?P<src_address>\d+\.\d+\.\d+\.\d+)

The extracted values can be used to chart your results. For example,

| rex Protocol:\s+(?P<protocol_id>\d+) | chart count() by protocol_id

Since the rex command acts on the search results, you can add it to a query string as shown
below:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ONE-TO-ONE COMMANDS

Page 22/60 sls-en_search_query_language_gde - 07/04/2024

Windows Filtering AND allowed | rex Protocol:\s+(?P<protocol_id>\d+)

user=* | rex on user:\s+(?P<account>\S+)@(?P<domain>\S+) | chart count()
by account, domain | search account=*

 NOTE

Use Single quote to address inline normalization while using square bracket. For example:

l This syntax works: | norm on user <my_user:\S+> | chart count() by
my_user.

l But this does not. | norm on user <my_user:[A-Z]+> | chart count() by
my_user.

If you use the box brackets ([,]), single quote ('') is necessary in the syntax.

norm

You can use the norm command to extract variables from the search results into a field. The
difference between the rex command and the norm command is that norm supports both
normalization syntax and re2 syntax. The rex command only supports re2 syntax.

Example Log:

Dec 17 05:00:14 ubuntu sshd[7596]: Invalid user Bob from 110.44.116.194

To extract the value of the user into the field user, use the following syntax:-

| norm Invalid user <user:word>

And this can also be used to chart in the graph as follows.

| norm Invalid user <user:word>| chart count() by user

You can also use the norm command to extract multiple key-value pairs as shown below:

| norm Invalid user <user:word> from <source_ip:ip>
| chart count() by my_user, msg | search my_user=*

 NOTE

Use Single quote to address inline normalization while using square bracket. For example:

l This syntax works: | norm on user <my_user:\S+> | chart count() by
my_user.

l But this does not. | norm on user <my_user:[A-Z]+> | chart count() by
my_user.

If you use the box brackets ([,]), single quote ('') is necessary in the syntax.

fields

You can use the fields command to display the search results in a tabular form. The table is
constructed with headers according to the field-names you specify. SLS returns null if the logs
do not contain the specified fields.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ONE-TO-ONE COMMANDS

Page 23/60 sls-en_search_query_language_gde - 07/04/2024

| fields source_address, source_port, destination_address, destination_
port

Here, the fields source_address, source_port, destination_address, and destination_port are
displayed in a tabular form as shown above.

Any log message without the field destination_port has a corresponding row with the
destination_port column value as -N/A-.

rename

You can use the rename command to rename the original field names.

Example:

| rename device_ip as host

When multiple fields of a log are renamed as the same name, the rightmost field takes
precedence over others and only that field is renamed.

Example:

| rename source_address as ip, destination_address as ip

Here, if both the source_address and destination_address fields are present in a log, only the
destination_address field is renamed as ip in search results.

The log messages after normalization can have different field-names for information carrying
similar values. For example, different logs may have name, username, u_name, or user_name as
keys for the same field username. To aggregate all the results and analyze them properly, you
can use the rename command.

| rename target_user as user, caller_user as user | chart count() by user

In some cases, the field names can be more informative with the use of rename command as
below:

label = Attack | rename source_address as attacking_ip | chart count() by
attacking_ip

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ONE-TO-ONE COMMANDS

Page 24/60 sls-en_search_query_language_gde - 07/04/2024

Process Commands
You can use the process command to execute different one-to-one functions which produce
one output for one input given.

SLS Process Commands are:

AsciiConverter

Converts hexadecimal (hex) value and decimal (dec) value of various keys to their
corresponding readable ASCII values. It supports the Extended ASCII Table for processing
decimal values.

Hexadecimal to ASCII

Syntax:

| process ascii_converter(fieldname,hex) as string

Example:

| process ascii_converter(sig_id,hex) as alias_name

Decimal to ASCII

Syntax:

| process ascii_converter(fieldname,dec) as string

Example:

| process ascii_converter(sig_id,dec) as alias_name

Clean Char

Removes all the alphanumeric characters present in a field-value.

Syntax:

| process clean_char(<field_name>) as <string_1>, <string_2>

Example:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 25/60 sls-en_search_query_language_gde - 07/04/2024

| process clean_char(msg) as special, characters
| chart count() by special, characters

Codec

Codec is a compression technology with an encoder to compress the files and a decoder to
decompress. This process command encodes the field values to ASCII characters or decodes
the ASCII characters to their text value using the Base64 encoding/decoding method. Base64
encoding converts binary data into text format so a user can securely handle it over a
communication channel.

Syntax:

| process codec(<encode/decode function>, <field to be encoded/decoded>)
as <attribute_name>

Example:

| process codec(encode, name) as encoded_name

Here, the "| process codec(encode, name) as encoded_name" query encodes the value of name
field by applying encode function and displays encoded value in encoded_name.

Compare

Compares two values to check if they match or not.

Syntax:

| process compare(fieldname1,fieldname2) as string

Example:

| process compare(source_address, destination_address) as match
| chart count() by match, source_address, destination address

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 26/60 sls-en_search_query_language_gde - 07/04/2024

Compare Network

Takes a list of IP addresses as inputs and checks if they are from the same network or different
ones. It also checks whether the networks are public or private. The comparison is carried out
using either the default or the customized CIDR values.

Syntax:

| process compare_network(fieldname1,fieldname2)

Example: (Using default CIDR value)

source_address=* destination_address=*
| process compare_network (source_address, destination_address)
| chart count() by source_address_public, destination_address_public,
same_network, source_address, destination_address

Count Char

Counts the number of characters present in a field-value.

Syntax:

| process count_char(fieldname) as int

Example:

| process count_char(msg) as total_chars
| search total_chars >= 100

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 27/60 sls-en_search_query_language_gde - 07/04/2024

CountOf

Takes a field as a parameter and counts the number of times the element(s) occurred in the
field's value.

Syntax:

| process count_of (source field name, string, kind)

Here, the source and search parameters are required.

Example:

| process count_of (device_address, "127") as cnt

This query counts the occurance of 127 string in the value of device_address field and displays
it in cnt.

Example:

| process count_of (collected_at, "L") as occur

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 28/60 sls-en_search_query_language_gde - 07/04/2024

This query counts the occurance of L string in the value of collected_at field and displays it in
occur.

Example:

|process count_of (device_ip, ".0." , "regex") as nonrepeat

This query counts the occcurance of .0. string by applying regex pattern in the value of device_
ip field and displays it in nonrepeat.

Current Time

Gets the current time from the user and adds it as a new field to all the logs. This information
can be used to compare, compute, and operate the timestamp fields in the log message.

Syntax:

| process current_time(a) as string

Example:

source_address=* | process current_time(a) as time_ts
| chart count() by time_ts, log_ts, source_address

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 29/60 sls-en_search_query_language_gde - 07/04/2024

DatetimeDiff

Processes two lists, calculates the difference between them, and returns the absolute value of
the difference as the delta. The two lists must contain timestamps. It requires two first and
second input parameters that are mandatory and can either be a list or a single field. The third
parameter is mandatory and represents the required difference between the two input fields.
This difference must be specified in either seconds, minutes or hours. The purpose of the third
parameter is to determine how the difference between the two input fields can be represented.
For instance, if the difference is specified in seconds, the output will show the absolute
difference in seconds.

Syntax:

| process datetime_diff("seconds", ts_list1, ts_list2) as delta

Example:

| process datetime_diff("seconds",log_ts, col_ts) as diff | chart count()
by diff

Difference

Calculates the difference between two numerical field values of a search.

Syntax:

| process diff(fieldname1,fieldname2) as string

Example:

| process diff(sent_datasize,received_datasize) as difference
| chart count() by sent_datasize, received_datasize,difference

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 30/60 sls-en_search_query_language_gde - 07/04/2024

DNS Cleanup

Converts a DNS from an unreadable format to a readable format.

Syntax:

| process dns_cleanup(fieldname) as string

Example:

col_type=syslog | norm dns=<DNS.string>| search DNS=*
|process dns_cleanup(DNS) as cleaned_dns
| norm on cleaned_dns .<dns:.*>.
| chart count() by DNS, cleaned_dns, dns

DNS Process

Returns the domain name assigned to an IP address and vice-versa. It takes an IP address or a
Domain Name and a Field Name as input. The plugin then verifies the value of the field. If the
input is an IP Address, it resolves the address to a hostname and if the input is a Domain Name,
it resolves the address to an IP Address. The output value is stored in the Field Name provided.

Syntax:

| process dns(IP Address or Hostname)

Example:

destination_address=* | process dns(destination_address) as domain
| chart count() by domain

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 31/60 sls-en_search_query_language_gde - 07/04/2024

Domain Lookup

Provides the domain name from a URL.

Syntax:

| process domain(url) as domain_name

Example:

url=* | process domain(url) as domain_name |
chart count() by domain_name, url

Entropy

Entropy measures the degree of randomness in a set of data. This process command calculates
the entropy of a field using the Shanon entropy formula and displays data in the provided field.
A higher entropy number denotes a data set with more randomness, which increases the
probability that a system artificially generated the values and could potentially lead to a
malicious conclusion.

Syntax:

| process entropy (field) as field_entropy

Example:

device_address = *| process entropy (device_address) as test

Here, the "| process entropy (device_address) as test" command calculates the entropy of the
device_address field and displays it in test.

Example:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 32/60 sls-en_search_query_language_gde - 07/04/2024

| process entropy (url_address, url) as entropy_url

Here, the "| process entropy (url_address, url) as entropy_url" command takes url as an optional
parameter and extracts the domain name from the url_address to perform entropy calculation
on it and displays it in entropy_url.

Example:

| process entropy ("google.com", string) as en

Here, the "| process entropy ("google.com", string) as en" command takes string as an optional
parameter and calculates the entropy of google.com raw string field and displays it in en.

Eval

Evaluates mathematical, boolean and string expressions. It places the result of the evaluation
in an identifier as a new field.

Syntax:

| process eval("identifier=expression")

Example:

| process eval("Revenue=unit_sold*Selling_price")

Experimental Median Quartile Quantile

Performs statistical analysis (median, quartile and quantile) of events based on fields. All these
commands take numerical field values as input.

Median

Syntax:

| chart median(fieldname) as string

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 33/60 sls-en_search_query_language_gde - 07/04/2024

Example:

doable_mps=* |chart median(doable_mps)

Quartile

Syntax:

| chart quartile(fieldname) as string1, string2, string3

Example:

doable_mps=* |chart quartile(doable_mps)

Quantile

Syntax:

| process quantile(fieldname)

Example:

doable_mps=* | process quantile(doable_mps)
|search quantile>0.99
|chart count() by doable_mps order by doable_mps desc

GEOIP

Gives the geographical information of a public IP address. It adds a new value "internal" to all
the fields generated for the private IP supporting the RFC 1918 Address Allocation for Private
Internets.

Syntax:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 34/60 sls-en_search_query_language_gde - 07/04/2024

| process geoip (fieldname)

Example:

| process geoip (source_address)

For the Private IP:

For the Public IP:

Grok

Extracts key-value pairs from logs during query runtime using Grok patterns. Grok patterns are
the patterns defined using regular expression that match with words, numbers, IP addresses,
and other data formats.

Refer to Grok Patterns and find a list of all the Grok patterns and their corresponding regular
expressions.

Syntax:

| process grok("<signature>")

A signature can contain one or more Grok patterns.

Example:

To extract the IP address, method, and URL from the log message:

192.168.3.10 GET /index.html

Use the command:

| process grok("%{IP:ip_address_in_log} %{WORD:method_in_log} %
{URIPATHPARAM:url_in_log}")

Using this command adds the ip_address_in_log, method_in_log, and url_in_log fields and their
respective values to the log if it matches the signature pattern.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 35/60 sls-en_search_query_language_gde - 07/04/2024

InRange

Determines whether a certain field-value falls within the range of two given values. The
processed query returns TRUE if the value is in the range.

Syntax:

| process in_range(endpoint1, endpoint2, field, result, inclusion)

where,

endpoint1 and endpoint2 are the endpoint fields for the range, the field
is the fieldname to check whether its value falls within the given range,
result is the user provided field to assign the result (TRUE or FALSE),
inclusion is the parameter to specify whether the range is inclusive or
exclusive of given endpoint values. When this parameter is TRUE, the
endpoints will be included for the query and if it is FALSE, the endpoints
will be excluded.

Example:

| process in_range(datasize, sig_id, duration,Result, True)

IP Lookup

Enriches the log messages with the Classless Inter-Domain Routing (CIDR) address details. A
list of CIDRs is uploaded in the CSV format during the configuration of the plugin. For any IP
Address type within the log messages, it matches the IP with the content of the user-defined
Lookup table and then enriches the search results by adding the CIDR details.

Syntax:

| process ip_lookup(IP_lookup_table, column, fieldname)
where IP_lookup_table is the lookup table configured in the plugin, Column
is the column name of the table which is to be matched with the fieldname
of the log message.

Example:

| process ip_lookup(lookup_table_A, IP, device_ip)

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 36/60 sls-en_search_query_language_gde - 07/04/2024

This command compares the IP column of the lookup_table_A with the device_ip field of the log
and if matched, the search result is enriched.

JQ Parser

Applies the JQ filter to the fields with valid JSON field values of normalized logs and extracts
key values from that field. The JQ filter defines a path for extracting the required data from a
JSON file and has a wide variation and functionality.

Syntax:

| process jq_parser (field name, "filter") as field name

Example:

| process jq_parser (conditional_access_policies, ".[].result") as cap_
result

Here, the "| process jq_parser (conditional_access_policies, ".[].result") as cap_result" query
applies [] (array filter) and result filter to the conditional_access_policies field and extracts the
key values to the cap_result field.

JSON Expand

Takes the field with a valid JSON array value and creates separate log instances for individual
array items of that field. Each array item takes the original field name.

Syntax:

| process json_expand (field name)

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 37/60 sls-en_search_query_language_gde - 07/04/2024

Example:

| process json_expand (policy)

Here, the "| process json_expand (policy)" query expands the policy field into four log instances.
After expansion, each array item takes the policy as a field name.

JSON Parser

The JavaScript Object Notation (JSON) Parser reads JSON data and extracts key values from the
fields with valid JSON field values of normalized logs. A string filter is applied to the provided
field, which defines a path for extracting values from it. The filter contains a key, which can be
alphanumeric and special characters except square brackets ([]), backtick (`) and tilde (~).
These exceptional characters are reserved for essential use cases, such as mapping the list
and selecting a condition in JSON Parser.

The supported filter formats for JSON Parser are:

l Chaining for nested JSON
Example: .fields.user.Username

l Array access
Example: .[1]

Syntax:

| process json_parser (field name, "filter") as field name

JSON Parser supports map and select functions for applying filters with true conditional
statements. The supported conditional operators are: =, !=, >, < , >= and <=.

General syntax to use map and select functions:

| process json_parser(field name, ".[condition]") as field name

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 38/60 sls-en_search_query_language_gde - 07/04/2024

Example:

| process json_parser (msg, ".AzureLogAnalytics") as analytics

Here, the "| process json_parser (msg, ".AzureLogAnalytics") as analytics" query applies the
AzureLogAnalytics filter to the msg field and extracts the key values to the analytics field.

Example:

In filter, the backslash escaped the period before type and query applies the filter to the
evidence field and extracts the key value to the data_type field.

Example:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 39/60 sls-en_search_query_language_gde - 07/04/2024

In the .[.severity>50] filter, a conditional statement severity>50 is used and the "| process json_
parser(detail, ".[.severity > 50]") as listWithSeverityGreaterThan50" query applies the filter to
the detail field and extracts the list of key values with the true condition to the
listWithSeverityGreaterThan50 field.

ListLength

Returns the number of elements in the list.

Syntax:

| process list_length(list) as length

Example:

| chart distinct_list(actual_mps) as lst | process list_length(lst) as
lst_length

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 40/60 sls-en_search_query_language_gde - 07/04/2024

ListPercentile

Calculates the percentile value of a given list. It requires at least two input parameters. The first
parameter is mandatory and must be a list. This command can also accept up to five additional
parameters. The second parameter must be an alias, which is used in conjunction with the
percentile percentage to determine the required percentile. The alias is concatenated with the
percentile percentage to store the required percentile value.

Syntax:

| process list_percentile(list, 25, 75, 95, 99) as x

Result: x_25th_percentile = respective_value
x_75th_percentile = respective_value
x_95th_percentile = respective_value
x_99th_percentile = respective_value

General:
| process list_percentile(list,p) as aliasalias_pth_percentile

Example:

| actual_mps=* chart distinct_list(actual mps) as a | process list_
percentile(a, 50, 95,99) as x | chart count() by a, x_50th_percentile, x_
95th_percentile, x_99th_percentile

Next

Takes a list and an offset as input parameters and returns a new list where the elements of the
original list are shifted to the left by the specified offset. The maximum allowable value for the
offset is 1024. For example, if the original list is [1, 2, 3, 4, 5, 6] and the offset is 1, the
resulting list would be [2, 3, 4, 5, 6]. Similarly, if the offset is 2, the resulting list would be [3, 4,
5, 6]. This command requires two parameters as input. The first is mandatory and must be a
list. The second parameter is mandatory and represents the offset value. An alias of 1 must be
provided as input.

Syntax:

| process next(list, 1) as next_list| process next(list, 2) as next_list_2

Example:

| chart list(user) as list | process next(list, 1) as next_list | chart
count() by list next_list

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 41/60 sls-en_search_query_language_gde - 07/04/2024

Percentile

Percentiles are numbers below which a portion of data is found. This process command
calculates the statistical percentile from the provided field and informs whether the field's value
is high, medium or low compared to the rest of the data set.

Syntax:

| chart percentile (field name, percentage)

Example:

doable_mps = *| chart percentile (doable_mps, 99)

Here, the "| chart percentile (doable_mps, 99)" command calculates the percentile for the value
of the doable_mps field.

Process lookup

This process command looks up related data from a user defined table.

Syntax:

| process lookup(table,field)

Example:

| process lookup(lookup_table, device_ip)

Regex

Extracts specific parts of the log messages into custom field names.

Syntax:

| process regex("_regexpattern", _fieldname)
| process regex("_regexpattern", "_fieldname")

Both syntaxes are valid.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 42/60 sls-en_search_query_language_gde - 07/04/2024

Example:

| process regex("(?P<type>\S*)",msg)

SortList

Sorts a list in ascending or descending order. By default, the command sorts a list in ascending
order. The first parameter is mandatory and must be a list. The second parameter desc is
optional.

Syntax:

| process sort_list(list) as sorted_list
| process sort_list(list, "desc") as sorted_list

Example:

chart distinct list(actual_mps) as lst | process sort_list(lst) as LP_KB_
Dynamictable_Populate_Values | chart count by lst, sorted list

String Concat

Joins multiple field values of the search results.

Syntax:

| process concat(fieldname1, fieldname2,, fieldnameN) as string

Example:

| process concat(device_name,device_ip) as device

Summation

Calculates the sum between two numerical field values of a search.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 43/60 sls-en_search_query_language_gde - 07/04/2024

Syntax:

| chart sum(fieldname)

Example:

label = Memory | chart sum(used) as Memory_Used by col_ts

toList

Populates the dynamic list with the field values of the search result.

Syntax:

| process toList (list_name, field_name)

Example:

device_ip=* | process toList(device_ip_list, device_ip)

toTable

Populates the dynamic table with the fields and field values of the search result.

Syntax:

| process toTable (table_name, field_name1, field_name2,...., field_name9)

Example:

device_ip=* | process toTable(device_ip_table, device_name, device_ip,
action)

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 44/60 sls-en_search_query_language_gde - 07/04/2024

WhoIsLookup

Enriches the search result with the information related to the given field name from the WHOIS
database.The WHOIS database consists of information about the registered users of an Internet
resource such as registrar, IP address, registry expiry date, updated date, name server
information and other information. If the specified field name and its corresponding value are
matched with the equivalent field values of the WHOIS database, the process command
enriches the search result, however, note that the extracted values are not saved.

Syntax:

| process whoislookup(field_name)

Example:

| chart distinct_list(log_ts) as log_ts_list, distinct_list(col_ts) as
col_ts_list
| process datetime_diff("seconds", log_ts_list, col_ts_list) as delta
| chart count() by log_ts_list, col_ts_list, delta`

 domain =* | process whoislookup(domain)

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PROCESS COMMANDS

Page 45/60 sls-en_search_query_language_gde - 07/04/2024

Filtering Commands
Filtering commands help you filter the search results.

search

To conduct searches on search results use the search command. It searches on dynamic fields
returned from the norm, rex, and the table commands.

 NOTE
It is not advised to use the search command unless absolutely necessary. The reason for this is
that the search command uses heavy resources. So, it is always better to apply any kind of
filtering before using the search command.

To search for users who have logged in more than 5 times:

login user = * | chart count() as count_user by user | search count_user >
5

If you create a dynamic field new field using norm command as,

| norm actual_mps = < new_field:int >

To view the logs which have 100 as the value of the new field, use the search command as:

| norm actual_mps = < new_field:int >|search new_field = 100

We recommend you to use the search command only in the following cases:

l When you need to filter the results for simple search (non key-value search).
For example:
| search error

l When you need to filter the results using the or logical operator.
For example:
| search device_name=localhost or col_type=filesystem

filter

The filter command lets you further filter the logs retrieved in the search results. SLS uses the
filter command to drill-down on the search results. The search command is more efficient as it
does not index intermediate fields.

 NOTE

l The filter command filters the results based on dynamic fields returned from the norm,
rex, and table commands as well.

l The filter command only works with expressions having the =, >, <, >=, and <=
operators.

l To filter the results with more than one condition, you must chain multiple filter
expressions.

Syntax:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
FILTERING COMMANDS

Page 46/60 sls-en_search_query_language_gde - 07/04/2024

<search query> | filter <condition>

For example, if you want to display only the domains that have more than 10 events
associated with them in the search results, use the following query:

norm_id=*Firewall url=* | process domain(url) as domain | chart count() as
events by domain | filter events>10

The query searches for all the logs containing the fields url and norm_id with the value of norm_
id having Firewall at the end. It then adds a new field domain to the logs based on the
respective URLs and groups the results by their domains. Finally, the filter command limits the
results to only those domains that have more than 10 events associated with them.

latest

The latest command finds the most recent log messages for every unique combination of
provided field values.

| latest by device_ip | timechart count() by device_ip

This query searches for the latest logs of all the devices.

status = down port = 80 | latest on log_ts by device_ip

This query searches for all the latest devices based on the log_ts field whose web server
running on the port number 80 is down.

order by

Use order by to sort the search results based on a numeric field in either ascending or
descending order.

For simple searches that do not contain aggregation or correlation queries, the command can
sort the search results based on only timestamp fields such as log_ts and col_ts. However, for
other searches, all fields are supported.

Examples:

device_name= "John Doe" and col_type="syslog" | order by col_ts asc

This query searches for all the syslog messages generated from the device named John Doe
and sorts them in the ascending order of their col_ts values.

device_name=* | order by log_ts desc

This query searches for the logs from all the devices in the system and sorts them in the
descending order of their log_ts values.

 NOTE
The sorting order of the search results is inconsistent when a search query does not contain an
order sorting command. Use the order by command to make it consistent.

limit <number>

Use the limit <number> command to limit the number of results displayed. Additionally, you
can add the other keyword at the end of the query to display the aggregation of the rest of the

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
FILTERING COMMANDS

Page 47/60 sls-en_search_query_language_gde - 07/04/2024

results.

 NOTE

l The feature to display the Top-10 and the Rest graphs is supported for the aggregation
queries.

l While using the limit <number> command to retrieve a large volume of logs, make sure
that your system has enough resources to load and render the data.

Example:

destination_address = * | chart count() by source_address limit 10 other

This query searches for all the logs having a destination address, filters the top 10 results by
their source address and rolls-up all the remaining results in the eleventh line. The source_
address field displays the word other in the table as shown in the figure below.

Some other working examples:

device_ip=*| chart count() by action, source_address limit 5 other

| chart sum(actual_mps) by service limit 20 other

| chart count() by action limit 10 other

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
FILTERING COMMANDS

Page 48/60 sls-en_search_query_language_gde - 07/04/2024

Pattern Finding
Pattern finding is a method of finding one or multiple streams and patterns of data to correlate a
particular event. For example: five failed logins, followed by a successful login. It can be
performed on the basis of the count and the time of occurrence of the stream. Use the Pattern
Finding rules to detect complex event patterns in a large number of logs.

Correlation is the ability to track multiple types of logs and deduce meanings from them. It lets
you look for a collection of events that make up a suspicious behavior and investigate further.

Single Stream

A stream consists of a count or occurrence of a query. The query can be a simple search query
or an aggregating query. The stream can consist of a having same or a within expression.
Stream has notion of time.

Syntax Description

[] For single streams, square brackets contain a stream of events.

within Keyword to denote the notion of time frame

having same Keyword

Following are the working examples for pattern finding using single stream:

To find 5 login attempts:

[5 action = "logged on"]

[5 login]

To find 5 login attempts within a timeframe of 2 minutes:

[5 action = "logged on" within 2 minutes]

[5 login within 2 minutes]

To find 5 login attempts by the same user:

[5 action = "logged on" having same user]
[5 login having same user]

To find 10 login attempts by the same user from the same source_address (multiple fields)
within 5 minutes:

[10 action = "logged on" having same user, source_address within 5
minutes]

The time format for specifying timeframe are: second(s), minute(s), hour(s) and day(s).

[error] as E

This query finds the logs with errors. It then aliases the result as E and displays the fields
prefixed with E such as E.severity, and E.device_ip. You can then use the aliased fields as
shown below:

[error] as E | rename E.device_ip as DIP | search DIP = "127.0.0.1"

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PATTERN FINDING

Page 49/60 sls-en_search_query_language_gde - 07/04/2024

Pattern finding queries for different conditions:

10 login to localhost (source_address) by the same user for the last 15 minutes.

[10 login source_address = 127.0.0.1 having same user_name within 15
minutes]

The field of a log file with a norm command .

[2 login | norm <username:word> login successful having same username
within 10 seconds]

Multiple Streams

You can join multiple patterns by using Pattern Finding by Joining Streams and Pattern Finding
by Following Streams.

Left Join

You can use a left join to return all the values from the table or stream on the left, and only the
common values from the table or stream on the right.

Example:

[table event_prob] as s1
left join [event = * | chart count() by event] as s2
on s1.event = s2.event

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PATTERN FINDING

Page 50/60 sls-en_search_query_language_gde - 07/04/2024

Right Join

You can use a right join to return all the values from the table or stream on the right and only
the common values from the table or stream on the left.

Example:

[5 transaction error having same user within 30 seconds] as s1
right join [transaction successful] as s2
on s1.user=s2.user

Join

Join queries are used to link the results from different sources. The link between two streams
must have an on condition. The link between two lookup sources or any of the lookup and
stream does not require a time-range. Join as a part of a search string, can link one data-set to
another based on one or more common fields. For instance, two completely different data-sets
can be linked together based on a username or event ID field present in both the data-sets.

The syntax for joining multiple patterns is as follows:

[stream 1] <aliased as s1> <JOIN> [stream 2] <aliased as s2> on <Join_conditions> |
additional filter query.

[action = locked] as locked
join
[action = unlocked] as unlocked
on
locked.target_user = unlocked.target_user
| chart count() by locked.target_user, locked.caller_computer,
unlocked.caller_user

[login] as l join [table User] as u on l.user = u.user

To find the events where a reserved port of an Operating System (inside the PORT_MACHINE
table) is equal to the blocked port (inside the BLOCKED_PORT table):

[table PORT_MACHINE port<1024] as s1 join [table BLOCKED_PORT] as s2 on
s1.port=s2.port

To find 5 login attempts by the same user within 1 minute followed by 5 failed login attempts
by the same user within 1 minute

[5 login having same user within 1 minute] as s1
followed by
[5 failed having same user within 1 minute]

To find 5 login attempts by the same user within 1 minute followed by 5 failed attempts by the
same user within 1 minute and users from both result are same

[5 login having same user within 1 minute] as s1
followed by
[5 failed having same username within 1 minute] as s2 on s1.username =
s2.username

Followed by

Pattern Finding by followed by is useful when two sequential streams are connected to an
action.

For example:

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PATTERN FINDING

Page 51/60 sls-en_search_query_language_gde - 07/04/2024

[2 login success having same user] AS stream1
followed by
[login failure] as stream2
ON
stream1.user = stream2.user

Here,

Syntax Description

[] AS stream1 A simple pattern finding query aliased as stream1

followed by Keyword

[] AS stream2 A simple search aliased as stream2

ON Keyword

stream1.user = stream2.user Matching field from the 2 streams

The syntax for joining multiple patterns is as follows:

l [stream 1] <aliased as s1> <followed by> [stream 2] <aliased as s2> <within time limit>
on <Join_conditions>| additional filter query.

l [stream 1] as s1 followed by [stream2] as s2 within time_interval on s1.field = s2.field
l [stream 1] as s1 followed by [stream2] as s2 on s1.field = s2.field
l [stream 1] as s1 followed by [stream2] as s2 within time_interval

The inference derived from the above queries:

l Streams can be labeled using alias. Here, the first stream is labeled as s1. This labeling is
useful while setting the join conditions in the join query.

l The operation between multiple streams is carried out using "followed by" or "join".
l Use the followed by keyword to connect two sequential streams anticipating an action, e.g.,

multiple login attempts followed by successful login.
l Use the join keyword to view additional information in the final search. The join syntax is

mostly used with tables for enriching the data.
l Time limit for occurrence can also be specified.
l If you use the join keyword, then specify the on condition.
l Join conditions are simple mathematical operations between the data-sets of two streams.
l Use additional filter query to mitigate false positives which are generally created while

joining a stream and a table. Searching the query with a distinct key from the table displays
an error-less result.

[| chart count() by device_ip] AS lookup
JOIN
[device_ip=*] AS log ON lookup.device_ip = log.device_ip

This query does not display histogram but displays the log table.

[device_ip=*] as log join [| chart count() by device_ip] as lookup on
log.device_ip=lookup.device_ip

This query displays both the histogram and the log table.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
PATTERN FINDING

Page 52/60 sls-en_search_query_language_gde - 07/04/2024

Chaining of commands
You can chain multiple commands into a single query by using the pipe (|) character. Any
command except fields can appear before or after any other command. The fields command
must always appear at the end of the command chain.

Example:

| chart count() as cnt by device_name | search cnt > 1000

This query displays the number of logs with the same device_name appearing more than 1000
times.

(label = logoff) AND hour (log_ts) > 8 AND hour (log_ts) <16 |
latest by user |
timechart count() by user

This query captures all the log messages labeled as logoff and those collected between 8 AM
and 4 PM. It then displays the timechart of the recent users for the selected time-frame.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
CHAINING OF COMMANDS

Page 53/60 sls-en_search_query_language_gde - 07/04/2024

Additional Notes

Process or Count

Count and process are keywords and must be enclosed within double quotes.

MsWinEventLog product=* | chart count() as "Count" by product
order by count() desc limit 10

Similarly,

MsWinEventLog product=* "process"=* action=*
| fields product, "process", action, object

Conditional Expression

Conditional expression within parenthesis () must be separated explicitly by or.

| chart count(label = delete or label = remove) as remove

Forward Slash Expression

Any expression after the forward slash must be enclosed within double quotes.

source_name = "/opt/immune/var/log/audit/webserver.log"
| chart count() by source_address

norm

| norm doable_mps=<dmps:'['0-9']'+>

| norm <:'\['><my_field:word><:'\]'> | chart count() by my_field

timechart

Limit does not work with timechart.

| timechart count() by col_type

Capturing normalized field values

Use norm on command to capture normalized field value in log search result.

Suppose the log search result consists of a log value pair

source_name = /opt/immune/var/log/benchmarker

Now, if you want to capture the first two words of the path, you can write
the query as follows:

| norm on source_name <capture:'\/opt\/immune'>

This feature works well with rex command too.

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ADDITIONAL NOTES

Page 54/60 sls-en_search_query_language_gde - 07/04/2024

user=* | rex on user:\s+(?P<account>\S+)@(?P<domain>\S+)
| chart count() by account, domain | search account=*

In the example above, the rex command is used on a field which captures email addresses. The
email address is then broken into account and domain using the corresponding regex.

Grok Patterns

SLS search recognizes the following Grok patterns.

General Patterns

Pattern name Regular expression

USERNAME [a-zA-Z0-9._-]+

USER %{USERNAME}

INT (?:[+-]?(?:[0-9]+))

BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:.[0-9]+)?)|(?:.[0-9]+)))

NUMBER (?:%{BASE10NUM})

BASE16NUM (?<![0-9A-Fa-f])(?:[+-]?(?:0x)?(?:[0-9A-Fa-f]+))

BASE16FLOAT \b(?<![0-9A-Fa-f.])(?:[+-]?(?:0x)?(?:(?:[0-9A-Fa-f]+(?:.[0-9A-Fa-f]*)?)|(?:.[0-9A-Fa-
f]+)))\b

POSINT \b(?:[1-9][0-9]*)\b

NONNEGINT \b(?:[0-9]+)\b

WORD \b\w+\b

NOTSPACE \S+

SPACE \s*

DATA .*?

GREEDYDATA .*

QUOTEDSTRING (?>(?<!\)(?>”(?>.|[^"]+)+”|”“|(?>'(?>\\.|[^\\']+)+')|’‘|(?>`(?>.|[^`]+)+`)|``))

UUID [A-Fa-f0-9]{8}-(?:[A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}

DOMAINTLD [a-zA-Z]+

EMAIL %{NOTSPACE}@%{WORD}.%{DOMAINTLD}

QS %{QUOTEDSTRING}

Networking-related Patterns

Pattern name Regular expression

MAC (?:%{CISCOMAC}|%{WINDOWSMAC}|%{COMMONMAC})

CISCOMAC (?:(?:[A-Fa-f0-9]{4}.){2}[A-Fa-f0-9]{4})

WINDOWSMAC (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ADDITIONAL NOTES

Page 55/60 sls-en_search_query_language_gde - 07/04/2024

Pattern name Regular expression

COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})

IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|
((25[0-5]|2[0-4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-4]d|1dd|[1-9]?d)){3})|:))|(([0-9A-Fa-f]
{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-
4]d|1dd|[1-9]?d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-
f]{1,4})?:((25[0-5]|2[0-4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-4]d|1dd|[1-9]?d)){3}))|:))|
(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2
[0-4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-4]d|1dd|[1-9]?d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}
(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]d|1dd|[1-9]?d)(.
(25[0-5]|2[0-4]d|1dd|[1-9]?d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4})
{1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-4]d|1dd|
[1-9]?d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-
4]d|1dd|[1-9]?d)(.(25[0-5]|2[0-4]d|1dd|[1-9]?d)){3}))|:)))(%.+)?

IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?
[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?
[0-9]{1,2}))(?![0-9])

IP (?:%{IPV6}|%{IPV4})

HOSTNAME b(?:[0-9A-Za-z][0-9A-Za-z-]{0,62})(?:.(?:[0-9A-Za-z][0-9A-Za-z-]{0,62}))*(.?|b)

HOST %{HOSTNAME}

IPORHOST (?:%{HOSTNAME}|%{IP})

HOSTPORT %{IPORHOST}:%{POSINT}

Path-related patterns

Pattern name Regular expression

PATH (?:%{UNIXPATH}|%{WINPATH})

UNIXPATH (?>/(?>[w_%!$@:.,-]+|.)*)+

TTY (?:/dev/(pts|tty([pq])?)(w+)?/?(?:[0-9]+))

WINPATH (?>[A-Za-z]+:|\)(?:\[^\?*]*)+

URIPROTO [A-Za-z]+(+[A-Za-z+]+)?

URIHOST %{IPORHOST}(?::%{POSINT:port})?

URIPATH (?:/[A-Za-z0-9$.+!*’(){},~:;=@#%_-]*)+

URIPARAM ?[A-Za-z0-9$.+!*’|(){},~@#%&/=:;_?-[]]*

URIPATHPARAM %{URIPATH}(?:%{URIPARAM})?

URI %{URIPROTO}://(?:%{USER}(?::[^@]*)?@)?(?:%{URIHOST})? (?:%{URIPATHPARAM})?

Date and time patterns

Pattern name Regular expression

MONTH b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)? |Aug
(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)b

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ADDITIONAL NOTES

Page 56/60 sls-en_search_query_language_gde - 07/04/2024

Pattern name Regular expression

MONTHNUM (?:0?[1-9]|1[0-2])

MONTHNUM2 (?:0[1-9]|1[0-2])

MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9])

DAY (?:Mon(?:day)?|Tue(?:sday)?|Wed(?:nesday)?|Thu(?:rsday)?|Fri(?:day)? |Sat
(?:urday)?|Sun(?:day)?)

YEAR (?>dd){1,2}

HOUR (?:2[0123]|[01]?[0-9])

MINUTE (?:[0-5][0-9])

SECOND (?:(?:[0-5]?[0-9]|60)(?:[:.,][0-9]+)?)

TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])

DATE_US %{MONTHNUM}[/-]%{MONTHDAY}[/-]%{YEAR}

DATE_EU %{MONTHDAY}[./-]%{MONTHNUM}[./-]%{YEAR}

ISO8601_TIMEZONE (?:Z|[+-]%{HOUR}(?::?%{MINUTE}))

ISO8601_SECOND (?:%{SECOND}|60)

TIMESTAMP_ISO8601 %{YEAR}-%{MONTHNUM}-%{MONTHDAY}[T]%{HOUR}:?%{MINUTE} (?::?%
{SECOND})?%{ISO8601_TIMEZONE}?

DATE %{DATE_US}|%{DATE_EU}

DATESTAMP %{DATE}[-]%{TIME}

TZ (?:[PMCE][SD]T|UTC)

DATESTAMP_RFC822 %{DAY} %{MONTH} %{MONTHDAY} %{YEAR} %{TIME} %{TZ}

DATESTAMP_RFC2822 %{DAY}, %{MONTHDAY} %{MONTH} %{YEAR} %{TIME} %{ISO8601_TIMEZONE}

DATESTAMP_OTHER %{DAY} %{MONTH} %{MONTHDAY} %{TIME} %{TZ} %{YEAR}

DATESTAMP_EVENTLOG %{YEAR}%{MONTHNUM2}%{MONTHDAY}%{HOUR}%{MINUTE}%{SECOND}

Syslog patterns

Pattern name Regular expression

SYSLOGTIMESTAMP %{MONTH} +%{MONTHDAY} %{TIME}

PROG (?:[w._/%-]+)

SYSLOGPROG %{PROG:program}(?:[%{POSINT:pid}])?

SYSLOGFACILITY <%{NONNEGINT:facility}.%{NONNEGINT:priority}>

HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

SYSLOGHOST %{IPORHOST}

Log formats

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ADDITIONAL NOTES

Page 57/60 sls-en_search_query_language_gde - 07/04/2024

Pattern name Regular expression

SYSLOGBASE %{SYSLOGTIMESTAMP:timestamp} (?:%{SYSLOGFACILITY})?%
{SYSLOGHOST:logsource} %{SYSLOGPROG}:

COMMONAPACHELOG %{IPORHOST:clientip} %{USER:ident} %{USER:auth} [%{HTTPDATE:timestamp}]
“(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})?|%
{DATA:rawrequest})” %{NUMBER:response} (?:%{NUMBER:bytes}|-)

COMBINEDAPACHELOG %{COMMONAPACHELOG} %{QS:referrer} %{QS:agent}

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
ADDITIONAL NOTES

Page 58/60 sls-en_search_query_language_gde - 07/04/2024

Further reading
Additional information and answers to questions you may have about SLS are available in the
Stormshield knowledge base (authentication required).

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2
FURTHER READING

Page 59/60 sls-en_search_query_language_gde - 07/04/2024

https://kb.stormshield.eu/en/log-supervisor-sls

Page 60/60 sls-en_search_query_language_gde - 07/04/2024

SLS - SEARCH QUERY LANGUAGE GUIDE - V 2

documentation@stormshield.eu

All images in this document are for representational purposes only, actual products may differ.

Copyright © Stormshield 2024. All rights reserved. All other company and product names
contained in this document are trademarks or registered trademarks of their respective
companies.

	Change log
	Getting started
	Simple Search
	Single word
	Multiple words
	Phrases
	Field values
	Logical operators
	And
	Or
	Not

	Parentheses
	Wildcards
	Step
	Lower and Upper
	Time Functions
	second
	minute
	hour
	day
	day of week
	month

	List
	Table

	Aggregators
	chart
	timechart
	Available Aggregators
	avg()
	count()
	distinct_count()
	distinct_list()
	list()
	max() and min()
	sum()
	var()

	One-to-One Commands
	rex
	norm
	fields
	rename

	Process Commands
	AsciiConverter
	Clean Char
	Codec
	Compare
	Compare Network
	Count Char
	CountOf
	Current Time
	DatetimeDiff
	Difference
	DNS Cleanup
	DNS Process
	Domain Lookup
	Entropy
	Eval
	Experimental Median Quartile Quantile
	GEOIP
	Grok
	InRange
	IP Lookup
	JQ Parser
	JSON Expand
	JSON Parser
	ListLength
	ListPercentile
	Next
	Percentile
	Process lookup
	Regex
	SortList
	String Concat
	Summation
	toList
	toTable
	WhoIsLookup

	Filtering Commands
	search
	filter
	latest
	order by
	limit <number>

	Pattern Finding
	Single Stream
	Multiple Streams
	Left Join
	Right Join
	Join
	Followed by

	Chaining of commands
	Additional Notes
	Process or Count
	Conditional Expression
	Forward Slash Expression
	norm
	timechart
	Capturing normalized field values
	Grok Patterns

	Further reading

