
GUIDE

STORMSHIELD KEY MANAGEMENT
AS A SERVICE

ADMINISTRATION GUIDE
Version 4.5

Document last updated: October 16, 2025

Reference: sds-en-sds-kmaas-administration_guide-v4.5

Table of contents
1. Getting started 5

2. Understanding the global requirements 7
2.1 Requirements 7
2.2 Recommendations on administrators 7
2.3 Recommendations on network rules 7

3. Installing and running Stormshield KMaaS 9
3.1 Installing the Stormshield KMaaS via a Docker image 9

3.1.1 Requirements 9
3.1.2 Knowing the contents of the Docker image archive 9
3.1.3 Loading Docker 9

3.2 Running Stormshield KMaaS in Docker mode 10
3.2.1 Requirements 10
3.2.2 Starting a container 11

3.3 Installing the Stormshield KMaaS via RPM 11
3.3.1 Requirements 11
3.3.2 Compatibility 11
3.3.3 Installing the operating system 11
3.3.4 Installing OpenSSL 12
3.3.5 Installing NodeJS 12
3.3.6 Installing the Stormshield KMaaS 13

3.4 Running Stormshield KMaaS in RPM mode 13
3.5 Checking system health 14

4. Uninstalling the Stormshield KMaaS 15
4.1 In Docker mode 15
4.2 In RPM mode 15

5. Configuring the Stormshield KMaaS 16
5.1 Creating the global configuration file 16
5.2 Assigning access privileges to the file 16
5.3 Editing the global configuration file 16

5.3.1 Simple parameters 17
5.3.2 tenants parameter 17
5.3.3 authorization parameters 18
5.3.4 https parameter 19
5.3.5 keks parameter 19
5.3.6 kmip_configuration parameters 20
5.3.7 cache parameter 21
5.3.8 logs parameters 21

6. Configuring KEKs 23
6.1 Configuring KEKs in standalone mode 23

6.1.1 Generating KEKs 23
6.1.2 Preparing the key encryption key file 24
6.1.3 Adding KEKs to the file 25
6.1.4 Renewing a symmetric encryption KEK 26

6.2 Configuring symmetric encryption KEKs in KMS mode 27
6.2.1 Requirements 27
6.2.2 Generating symmetric encryption KEKs in the KMS 27

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5

Page 2/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

6.2.3 Renewing KEKs in the KMS 28

7. Using the Stormshield KMaaS in secure mode (HTTPS, KMS) 29
7.1 Configuring TLS ciphers 29

7.1.1 Modifying the list of TLS ciphers in Docker mode 30
7.1.2 Modifying the TLS cipher list in RPM mode 30

8. Configuring proxy access 31
8.1 In Docker mode 31
8.2 In RPM mode 31

9. Backing up and restoring the Stormshield KMaaS files 33
9.1 Backing up Stormshield KMaaS files 33
9.2 Restoring the files in Docker mode 33
9.3 Restoring the files in RPM mode 33

10. Key Access Control List Service (KACLS) 35
10.1 Understanding the requirements 35

10.1.1 Global requirements and recommendations on administrators and network rules 35
10.1.2 Network requirements 35

10.2 Deploying the KACLS infrastructure 37
10.2.1 Setting up the Stormshield KMaaS in Google Workspace 38

10.3 Configuring the KACLS 38
10.4 Checking system health 47
10.5 Configuring the identity provider 47

10.5.1 Specifying the redirect URL 47
10.5.2 Retrieving import values 48
10.5.3 Managing authentication tokens 48

10.6 Configuring Google Workspace Client-side encryption 49
10.6.1 Specifying the External key service 50
10.6.2 Specifying the identity provider (IDP) 50

10.7 Using remote authentication 50
10.8 Using the KACLS with Drive, Meet and Calendar 51

10.8.1 Importing sensitive external files to Google Drive (Beta) 52
10.8.2 Enabling Google Meet hardware use 52
10.8.3 Enabling external user access for Google Drive and Google Meet 52
10.8.4 Enabling the use of a Google application via a remote file 53
10.8.5 Enabling the use of a Google application in the local configuration 53

10.9 Decrypting files and emails 53
10.10 Using the KACLS with Gmail 54

10.10.1 Using Gmail in standard mode 54
10.10.2 Using Gmail in advanced mode based on a KMS 56
10.10.3 Using Gmail 59

10.11 Migrating an external key service to another 59
10.11.1 Configuring migration in the KACLS 59
10.11.2 Adding the KACLS in Google 60
10.11.3 Enabling key service migration in Google 60
10.11.4 Using the backup key service other than for migration service 60

10.12 Customizing the authorization rules 61
10.12.1 Inputs specific to the wrap and unwrap API routes 61
10.12.2 Inputs specific to the privilegedwrap and privilegedunwrap API routes 63
10.12.3 Inputs specific to the rewrap API route 63
10.12.4 Inputs specific to the certs API route 64

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5

Page 3/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

10.12.5 Inputs specific to the digest API route 64
10.12.6 Inputs specific to the privatekeydecrypt and privatekeysign API routes 65
10.12.7 Inputs specific to the wrapprivatekey and privilegedprivatekeydecrypt API routes 67

11. Crypto API 68
11.1 Understanding the requirements 68
11.2 Configuring Crypto API 68
11.3 Customizing the authorization rules 70

11.3.1 Inputs specific to Crypto API encrypt and decrypt routes 71

12. Key Access Service (KAS) 73
12.1 Understanding the requirements 73
12.2 Configuring the Key Access Service 73
12.3 Customizing the authorization rules 76

12.3.1 Inputs specific to the Key Access Service rewrap, encrypt and decrypt routes 76

13. Public Key Infrastructure (PKI) 78
13.1 Understanding the requirements 78
13.2 Compatibility of algorithms and CA properties 79

13.2.1 Algorithms 79
13.2.2 CA properties 79
13.2.3 Other CSR-specific properties 82

13.3 Configuring PKI 83
13.4 Issuing certificates 86

13.4.1 Issuing a standard certificate 86
13.4.2 Issuing a certificate with common name override 87

13.5 Testing use cases with OpenSSL 87
13.5.1 Creating a CA with OpenSSL 87
13.5.2 Issuing a mTLS certificate with a CSR 88

14. Implementing the authorization rules with Open Policy Agent 89
14.1 Defining an OPA policy 90

14.1.1 Local OPA mode 90
14.1.2 OPA Server 91

14.2 Inputs relating to all API routes 92
14.3 Example of policy implementation 92

14.3.1 policy.rego file 92
14.3.2 policy.data.json file 93

14.4 Using custom claims 93
14.5 Using Attribute-based access control (ABAC) 94

15. Managing logs 96

16. Further reading 97

In the documentation, Stormshield Key Management as a service is referred to in its short form:
Stormshield KMaaS.

This document is not exhaustive and minor changes may have been included in this version.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5

Page 4/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

1. Getting started
The Stormshield Encryption Platform (SEP) solution helps implementing Data Centric Security
and Zero Trust (ZT) in your environment at multiple levels:

l Application level: Integrate Zero Trust directly into your existing applications, or those
currently under development (e.g., Google Workspace, healthcare applications, IoT,
business),

l Development process: Secure your data and access to your data during your development
processes. For instance by securing private HTTPS keys or API tokens for CI/CD, GitOps, etc.,

l Infrastructure level: Protect your secrets at the lowest level in your deployments, especially
by securing Kubernetes.

Stormshield KMaaS is the backend component of this ecosystem and acts as a Policy Decision
Point as defined in the Zero Trust architecture, securing and authorizing access to confidential
data.

It includes the following major features:

l Key Access Control List Service (KACLS), is dedicated to securing Google Workspace and
defined in collaboration with Google,

l Key Access Service (KAS) is a suite of REST APIs used by Stormshield Software
Development Kit (SDK),

l Crypto API exposes a REST API for general-purpose cryptographic operations, independent
of any specific ecosystem,

l Public Key Infrastructure (PKI) is a service that allows certificates to be quickly issued to
secure short-duration MTLS communications.

The diagram below shows the overall Stormshield Encryption Platform (SEP) ecosystem:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
1. GETTING STARTED

Page 5/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
1. GETTING STARTED

Page 6/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

2. Understanding the global requirements

2.1 Requirements

l The server on which the Stormshield KMaaS is installed must be healthy. There must be an
information system security policy whose requirements are met on the servers. This policy
shall verify the installed software is regularly updated and the system is protected against
viruses and spyware or malware (firewall properly configured, antivirus updates, etc.). It is
imperative to follow the operating system security recommendations issued by the ANSSI
in their document ANSSII-BP-028-EN.

l Access to the administrative functions of the workstation system is restricted only to
system administrators.

l The operating system must manage the logs generated by the product in accordance with
the security policy of the company. It must for example restrict read access to these logs to
only those explicitly permitted. For more information, see the section Managing logs.

l You must set up a system upstream of the Stormshield KMaaS to protect against distributed
denial-of-service (DDoS) and brute-force attacks. Please follow the ANSSI recommendations
(French only).

l You must filter incoming requests upstream of the Stormshield KMaaS. Only requests
meeting the following conditions should be accepted:
o The request header size must be smaller than the NodeJS default value. See the NodeJS

documentation.
o The size of the request body must be less than 1 MB.

l The Stormshield KMaaS must be installed on a server whose system and contributions are
kept up to date.

l The server hosting the solution must be located in a secure physical environment with
access control protocols and must be trusted.

2.2 Recommendations on administrators
l The Stormshield KMaaS administrators are considered as trusted. They are responsible for

defining the Stormshield KMaaS security policy by respecting the state of the art.
l The system administrator responsible is also considered as trusted. He/She is responsible

for the installation and maintenance of the application and server. He/She applies the
security policy defined by the Stormshield KMaaS administrators.

2.3 Recommendations on network rules

The content of the requests processed by the Stormshield KMaaS is in JSON format, except for
the /simpleenroll route. You can add the following rules to your web firewall (WAF) or load
balancer to ensure optimum protection.

l You must block all HTTP requests except:
o The POST requests with a Content-Type header containing "application/json".
o The GET and OPTIONS requests without a Content-Type header or with a Content-Type

header containing "application/json".

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
2. UNDERSTANDING THE GLOBAL REQUIREMENTS

Page 7/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/
https://cyber.gouv.fr/publications/denis-de-service-distribues-ddos
https://nodejs.org/docs/latest-v20.x/api/http.html#httpmaxheadersize
https://nodejs.org/docs/latest-v20.x/api/http.html#httpmaxheadersize

l Be sure to open the following network streams for the features you use:

Route Origin wildcard
(* = all URLs are

allowed)

Allowed
method

Feature

/health * GET All

/api/v1/<tenant_id>/crypto/decrypt * POST Crypto
API

/api/v1/<tenant_id>/crypto/encrypt * POST Crypto
API

/api/v1/<tenant_id>/.well-
known/est/simpleenroll

* POST PKI

/api/v1/<tenant_id>/certs * GET KACLS

/api/v1/<tenant_id>/delegate .google.com POST KACLS

/api/v1/<tenant_id>/digest .google.com POST KACLS

/api/v1/<tenant_id>/status * GET KACLS

/api/v1/<tenant_id>/privatekeydecrypt .google.com POST KACLS

/api/v1/<tenant_id>/privatekeysign .google.com POST KACLS

/api/v1/<tenant_
id>/privilegedprivatekeydecrypt

* POST KACLS

/api/v1/<tenant_id>/privilegedunwrap * POST KACLS

/api/v1/<tenant_id>/privilegedwrap * POST KACLS

/api/v1/<tenant_id>/rewrap .google.com POST KACLS

/api/v1/<tenant_id>/unwrap .google.com POST KACLS

/api/v1/<tenant_id>/wrap .google.com POST KACLS

/api/v1/<tenant_id>/wrapprivatekey * POST KACLS

/api/v1/<tenant_id>/kas/decrypt * POST KAS

/api/v1/<tenant_id>/kas/encrypt * POST KAS

/api/v1/<tenant_id>/kas/rewrap * POST KAS

l On all the routes that you use, activate the OPTIONS method, that enforces the across-origin
resource sharing (CORS).

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
2. UNDERSTANDING THE GLOBAL REQUIREMENTS

Page 8/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

3. Installing and running Stormshield KMaaS
There are two ways to deploy the Stormshield KMaaS: via an RPM for RedHat systems, or via a
Docker image.Stormshield recommends using the Docker image whenever possible.

3.1 Installing the Stormshield KMaaS via a Docker image

3.1.1 Requirements

l You must follow the ANSSI’s recommendations from the ANSSI-FT-082 document, relating to
the deployment of Docker containers.

l You must set up a container orchestration environment (e.g., Kubernetes , Docker Swarm)
to automatically manage replication, high availability and container life cycle. For a resilient
installation, Stormshield recommends a minimum of 3 instances of the Stormshield KMaaS.

l The configuration of the container orchestrator depends on the technology used. Refer to
your orchestrator's documentation for detailed installation steps and security best
practices specific to your environment.

l Install Docker on each server where you want to run the Stormshield KMaaS. The minimum
Docker version supported is 20.1.1. For more information, refer to the Install Docker Engine
documentation.

3.1.2 Knowing the contents of the Docker image archive

You must contact Stormshield to get the Docker image.

The archive of the Stormshield KMaaS contains the following files:

Location Resource

stormshield-kmaas-
{version}.tar

Docker image of the Stormshield KMaaS in .tar format.

config.json.template Template configuration file for the Stormshield KMaaS.

keks.json.template Template file for the list of key encryption keys (KEK).

list-of-
dependencies.html

List of the dependencies of the Stormshield KMaaS.

policy.wasm Default security policy module. This module does not enable any security policies.

policy.data.json Data file used by the policy.wasm module.

3.1.3 Loading Docker

l Load the image of the SDS encryption service in Docker using the following command:
docker load --input stormshield-kmaas-<version>.tar

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 9/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

#https://cyber.gouv.fr/publications/recommandations-de-securite-relatives-au-deploiement-de-conteneurs-docker
https://docs.docker.com/engine/install/

1. Create a dedicated directory to host your configuration, in which you copy the template
files provided with the Docker image. Rename the files as follows:
l config.json: configuration file of the Stormshield KMaaS,
l keks.json: file containing the list of key encryption keys (KEK).

In step Configuring the Stormshield KMaaS, you can edit these files directly in this
directory.

2. Make sure that the directory containing the configuration files is available in the container
through a volume or using your orchestrator's technology.
For more information, please refer to your orchestrator documentation.

3. Ensure that the keks.json file and the private keys are made available in a secure way in
the production environment.

3.2 Running Stormshield KMaaS in Docker mode

3.2.1 Requirements

Execution UID/GUID

The Stormshield KMaaS runs with the node user (UID/GID 1000) in the container. To ensure that
your application runs correctly and securely, be sure to specify the execution UID/GID correctly.
Below is an example of a command:
docker run -u 1000:1000 stormshield/kmaas:<version>

File access
l You must allow containers to access your configuration files (i.e., keks.json, config.json,

OPA files, certificate files and private keys).

l For config.json and keks.json files, Stormshield makes the following recommendations:
o If you have several instances of the Stormshield KMaaS, expose a single file to the

various containers of the application, as they must be identical on all instances,
o Mount them read-only, as they will never be modified by the Stormshield KMaaS.

Below is an example of a command with a read-only folder containing configuration files:
docker run -v -u 1000:1000 /my-kmaas-config-
folder:/etc/stormshield/cse:ro stormshield/kmaas:<version>

l Sensitive files (i.e., keks.json, private keys) must be managed by secure mechanisms
provided by your orchestrator. Refer to the documentation of your orchestrator.

Network traffic redirection

The service listens on the port defined in the config.json file (3000 by default) in the container.
Below is an example of a command that forwards host port 443 to port 3000:
docker run -p 443:3000 my-image

Refer to your orchestrator's documentation to set up port forwarding in a production
environment.

Access to environment variables

Containers must have access to the environment variables mentioned in this administration
guide. Below is the command for declaring an environment variable:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 10/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

docker run -e MY_VARIABLE=my-variable-value
stormshield/kmaas:<version>

Refer to your orchestrator's documentation to set the environment variables in a production
environment.

3.2.2 Starting a container

Example of a Docker command to start a Stormshield KMaaS container:
docker run -v /my-kmaas-config-folder:/etc/stormshield/cse:ro
-p 443:3000 -u 1000:1000 stormshield/kmaas:4.5.0.268

3.3 Installing the Stormshield KMaaS via RPM

Before installing the Stormshield KMaaS, you must install the operating system and NodeJS.

3.3.1 Requirements

In a cluster of three servers for the Stormshield KMaaS, in order to manage an average of 45 requests
per second and per Red Hat instance, each server must have at least the following resources:

l 4 processors and one thread per processor
l 4 GB of memory
l 20 GB of storage

If you want to improve performance, add the following resources in this order:

1. Threads for each processor,

2. Processors,

3. Instances in the cluster.

3.3.2 Compatibility

Each supported version of the operating system is compatible with specific versions of
OpenSSL and NodeJS. Please check the compatibility in the table below:

Operating system OpenSSL version NodeJS version

RedHat Enterprise Linux 8.10 At least v3.2.X v20
Tested with v20.16.0

RedHat Enterprise Linux 9.6 At least v3.2.2 v22

3.3.3 Installing the operating system

Install and activate a RedHat Enterprise Linux distribution version 8.10 or 9.6 based on the
version of the RPM delivered by Stormshield.

For more information, refer to the RedHat 8 documentation or the RedHat 9 documentation.

It is imperative to follow the operating system security recommendations issued by the ANSSI
in their document ANSSII-BP-028-EN.

You can install all dependencies offline on your operating system. To do so:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 11/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://access.redhat.com/documentation/fr-fr/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_installation/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_a_standard_rhel_9_installation/index
https://cyber.gouv.fr/

1. Get the RPM of the dependency.

2. Copy it on your machine.

3. Install it by running the command:
rpm -i

3.3.4 Installing OpenSSL

l OpenSSL v1.1.1 is supplied by default with RedHat Enterprise Linux 8.10. You must
manually install OpenSSL 3 using the commands below. Stormshield recommends using
the EPEL repository.

subscription-manager repos --enable codeready-builder-for-rhel-8-
$(arch)-rpms

dnf install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-8.noarch.rpm

dnf install openssl3

ln -b -s /usr/bin/openssl3 /usr/bin/openssl

ln -b -s /usr/lib64/libssl.so.<openssl_version>
/usr/lib64/libssl.so

ln -b -s /usr/lib64/libcrypto.so.<openssl_version>
/usr/lib64/libcrypto.so

ln -b -s /usr/include/openssl3/openssl /usr/include/openssl

where <openssl_version> must be replaced by the OpenSSL version installed, for example
3.2.2.

l OpenSSL v3.2.X is supplied by default with RedHat Enterprise Linux 9.0. Install OpenSSL
using the following command:
yum install openssl

3.3.5 Installing NodeJS

1. Install the package using the following commands:
l For RedHat 8:

curl -fsSL https://rpm.nodesource.com/setup_20.x | bash -# dnf
install -y nodejs

l For RedHat 9:
dnf module install nodejs:20

2. Check that NodeJS has indeed been installed with the following command:
node --version

Ensure that the NodeJS autorun has been enabled.

This command will install the latest version of NodeJS 20. The version 4.5 of the Stormshield
KMaaS has been tested with NodeJS 20.16.0.

With ReHat 9, if Node.js is installed as instructed above, it uses a dynamic link with the
libcrypto and libssl libraries of OpenSSL. It automatically gets the latest security patches
provided by RedHat.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 12/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://docs.fedoraproject.org/en-US/epel

3.3.6 Installing the Stormshield KMaaS

To install the Stormshield KMaaS, you must be a root user of the RedHat system.

Stormshield recommends that the server on which the Stormshield KMaaS is installed has a
multi-core processor with a minimum of 4 cores.

1. Copy the cse-4.5.x.xxx-redhatx.x86_64.rpm.rpm file on the system.

2. Run the following command:
rpm -i <package_name>.rpm

If NodeJS was not installed beforehand, this error message will appear:
error: Failed dependencies : nodejs is needed by csexxx

The following folders and files will be installed:

Location Resource

/usr/lib64/cse Source file folder.
On installation, the owner of the files is the user stormshield-cse. He
has u=rx,g=,o= permissions. For security reasons, we recommend
keeping these default settings.

/usr/bin/cse Binary file folder

/etc/stormshield/cse Configuration file folder:

l config.json.template - template configuration file for the
Stormshield KMaaS.

l keks.json.template - template file for the list of key encryption keys
(KEK).

l policy.wasm - default security policy module. This module does not
enable any security policies.

l policy.data.json - data file used by the policy.wasm module.

/etc/systemd/system/cse.service Configuration file to use the Stormshield KMaaS as a SystemD service

/usr/share/licenses/cse License file folder

/usr/share/doc/stormshield/
cse/copyright

Folder of the license files for the open-source libraries

3.4 Running Stormshield KMaaS in RPM mode

1. Run the Stormshield KMaaS as a systemd service with the root user using the following
command:
systemctl start cse

2. Check the status of the service:
systemctl status cse

3. Enable the autorun of the service when the machine starts:
systemctl enable cse

The Stormshield KMaaS uses all available CPU cores. This parameter cannot be configured.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 13/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

3.5 Checking system health

After you have installed and run the Stormshield KMaaS, check that it is running correctly.

This API returns only a limited amount of information about the running of the Stormshield
KMaaS and does not require any CORS in the HTTP header.

1. Use the health API route:
curl https://<my-cse-url>/health

2. If the system is running correctly, the return must be in the following form:
{}

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
3. INSTALLING AND RUNNING STORMSHIELD KMAAS

Page 14/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

4. Uninstalling the Stormshield KMaaS

4.1 In Docker mode

1. Clean up the containers:
docker stop <container_name>
docker rm <container_name>

2. Delete the local image:
docker rmi stormshield/kmaas:<version>

4.2 In RPM mode

1. Run the following command as a user with administration privileges:
rpm -e cse
The files added when installing the RPM are deleted, except:
l The files that you have modified in the meantime. They are saved with the .rpmsave

extension.
l The file that you have added yourself. They are kept.

2. Manually delete the configuration files that you have created or modified: config.json,
keks.json, policy.wasm and policy.data.json.

 NOTE
KEKs are highly sensitive items in terms of security. It is imperative to follow the ANSSI
recommendations concerning their life cycle.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
4. UNINSTALLING THE STORMSHIELD KMAAS

Page 15/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/le-referentiel-general-de-securite-version-20-les-documents
https://cyber.gouv.fr/le-referentiel-general-de-securite-version-20-les-documents

5. Configuring the Stormshield KMaaS
The global configuration of the Stormshield KMaaS is managed through a JSON file, config.json,
which is saved by default in /etc/stormshield/cse. This file sets the specifications for
authentication and authorization, as well as the port, service name and service mode.

5.1 Creating the global configuration file

A template file, config.json.template, is available to assist you.

l In RPM mode, this file is located in the directory /etc/stormshield/cse.
o Create your own global configuration file from the copy of the template using the

following command:
cd /etc/stormshield/cse
cp --preserve config.json.template config.json

l In Docker mode, the file is located in the dedicated directory you have created during
installation. For more information, see Installing the Stormshield KMaaS via a Docker image.

5.2 Assigning access privileges to the file
l Assign the read and write access privileges held by the current user to the file and read

access to the current config.json group:
chmod u=rw,g=r,o= config.json

Do not assign any run privileges on these files, or any privileges to other users. If access
privileges are too permissive, a warning log will be generated when the Stormshield KMaaS
starts, but will not prevent it from launching.

During installation, the stormshield-cse user is the owner of the configuration files by default.
Do not change the owner.

5.3 Editing the global configuration file
l To edit the configuration, change the default values of the config.json file template.

For more information on this file, refer to sections Knowing the contents of the Docker image
archive and Installing the Stormshield KMaaS

The tables below describe the parameters in the config.json file. The first table lists simple
parameters which do not contain any sub-objects. More complex parameters have their own
table.

Unless otherwise specified, in the configuration files:

l All “String” fields are restricted to 10,000 characters for security reasons,

l All ”Array” fields are limited to 500 items for security reasons.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 16/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

5.3.1 Simple parameters

Parameter Description Type Optional/
mandatory

kacls_url The Stormshield KMaaS URL used to prevent
"Man-in-the-middle" attacks.
E.g., https://<cse.example.com>.

String Mandatory

port Port on which the Stormshield KMaaS listens.
Port 3000 by default.

Integer Optional

name Name of the Stormshield KMaaS. String Optional

persistence_type Mode used for storing KEKs.
The prescribed values are:

l "json_file" if keys are stored in the keks.json
file,

l "kms'" if keys are stored in a key
management system (KMS).

String Mandatory

kacls_kek_label Label used to identify and retrieve the KEKs
from the KMS, if the KEKs are stored in a KMS.

String
between 1
and 255
characters
long.

Mandatory if
"persistence_
type": "kms"

external_request_timeout Timeout in milliseconds before canceling an
external request (7000 ms by default).
This timeout does not apply to the KMIP-
related requests when using a KMS.

Integer Optional

jwt_supported_signing_
algorithms

List of the allowed signature algorithms for
checking the validity of authorization and
authentication tokens. Supported algorithms
are: ["RS256", "RS384", "RS512", "ES256",
"ES384", "ES512", "PS256", "PS384", "PS512"].

String Mandatory (at
least one
algorithm)

5.3.2 tenants parameter

Contains configuration information specific to each tenant. They are grouped by "tenant_id",
which is the tenant unique identifier and is mandatory. The "tenants" object includes the
following components:

Parameter Description Type Optional/
mandatory

tenant_id Unique identifier of the tenant in UUIDv4
format.

String Mandatory

kacls:
JSON object containing the configuration for the KACLS feature.
For more information, refer to Configuring the KACLS.

enable Enables or disables the KACLS feature; i.e., Boolean Mandatory

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 17/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter Description Type Optional/
mandatory

crypto_api:
JSON object containing the configuration for the CryptoAPI feature.
For more information, refer to Configuring Crypto API.

enable Enables or disables the Public Key
Infrastructure feature (PKI).

Boolean Mandatory

pki:
JSON object containing the configuration for the PKI (Public Key Infrastructure) feature. For more
information, refer to Configuring PKI

enable Enables or disables the PKI feature. Boolean Mandatory

kas:
Json object containing the configuration for the Key Access Service (KAS) feature.
For more information, refer to Configuring the Key Access Service.

enable Enables or disables the KAS feature. Boolean Mandatory

5.3.3 authorization parameters

Array of JSON objects that describes how the KACLS authorization token generated by Google is
verified. It includes the following components.

Add one entry per Google service (e.g., Meet, Drive, Calendar, Gmail). The values of these
settings are provided in the Google documentation. For more information, see Example of the
authorization parameter for Google services

The authorization parameter is mandatory in all configurations. When using the KACLS, it must
contain the required authorization data. If you do not use the KACLS, the parameter must be an
empty array ("authorization": []).

Parameter Description Type Optional/
mandatory

issuer Issuer of the JWT authorization token (see RFC 7519). String Optional

url URL to the JWKS JSON file. String Mandatory

audience Recipient of the JWT authorization token (see RFC 7519). String Optional

Example of the authorization parameter for Google services

This extract of the config.json file is an example of how the authorization token can be
configured for the Drive, Meet, Calendar and Gmail Google services, the migration of one KACLS
to another, and Gmail Send to Anyone option. You can customize the rules that allow or deny a
request to the Stormshield KMaaS, using Open Policy Agent (OPA) policies. For more
information, see the section Implementing the authorization rules with Open Policy Agent.

"authorization": [
{

 "url": "https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
drive@system.gserviceaccount.com",
 "issuer": "gsuitecse-tokenissuer-drive@system.gserviceaccount.com",
 "audience": "cse-authorization"

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 18/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

 },
{

 "url": "https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
meet@system.gserviceaccount.com",
 "issuer": "gsuitecse-tokenissuer-meet@system.gserviceaccount.com",
 "audience": "cse-authorization"
 }

{
 "url": "https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
calendar@system.gserviceaccount.com",
 "issuer": "gsuitecse-tokenissuer-calendar@system.gserviceaccount.com",
 "audience": "cse-authorization"
 }

{
 "url": "https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
gmail@system.gserviceaccount.com",
 "issuer": "gsuitecse-tokenissuer-gmail@system.gserviceaccount.com",
 "audience": "cse-authorization"
 }

{
 "url": "https://www.googleapis.com/service_accounts/v1/jwk/apps-security-cse-
kaclscommunication@system.gserviceaccount.com",
 "issuer": "apps-security-cse-kaclscommunication@system.gserviceaccount.com”",
 "audience": "cse-authorization"
 }

{
 "url": "https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
gmail-sta@system.gserviceaccount.com",
 "issuer": "gsuitecse-tokenissuer-gmail-sta@system.gserviceaccount.com",
 "audience": "cse-authorization"
 },
]

5.3.4 https parameter

JSON object that describes the HTTPS certificates. To be used when you want to run the server
in secure mode. It includes the following components:

Parameter Description Type Optional/
mandatory

credentials l key: path to the private HTTPS key in PEM format.

l cert: path to the HTTPS certificate in PEM format.

l ca (optional): path to the HTTPS certification authority in PEM
format.

Object Optional

5.3.5 keks parameter

JSON object describing the refresh frequency of the KEKs while the Stormshield KMaaS is
running. It includes the following components:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 19/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter Description Type Optional/
mandatory

auto_refresh l scheduled.interval_seconds: frequency at which the KEKs are
scheduled to be automatically refreshed by the Stormshield
KMaaS (by default 86400 seconds, minimum value 1800
seconds).
Make sure you specify a value matching your needs and use.
Any value lower than 1800 seconds (30 minutes) will be
considered invalid and will prevent the server from starting.

l minimum_interval_seconds: minimum interval between two
refresh operations, whether periodic or one-off (3600
seconds by default). Limits queries to the KMS.

KEK refresh is only applicable if the parameter persistence_type:
"kms"

Integer in
seconds

Optional

5.3.6 kmip_configuration parameters

JSON object that describes the KMS configuration. It is mandatory if "persistence_type": "kms". It
includes the following objects:

Parameter Description Type Optional/
mandatory

host KMS server. String Mandatory

port Port that the KMS listens on (optional, 5696 by default). Integer Optional

client_private_key_
path

Path to the private key of the KMS client in PEM format. String Mandatory

client_certificate_
path

Path to the certificate of the KMS client in PEM format String Mandatory

ca_certificate_path Path to the certification authority of the KMS client in PEM
format.

String Optional

In order to use a KMS domain, the certificate of the KMS client must have a common name that
conforms with the KMS_DOMAIN_NAME>||<KMS_USER_NAME> format.
For instance, if your user is Jane and your domain is JaneDomain, the common name must be:
JaneDomain||Jane.
For more information, refer to the KMS KMIP documentation.

If using a KMs domain, the domain_id values of all the tenant configurations must imperatively
be the same and match the domain used by the KMIP configuration. For more information, refer
to section crypto_backends.

 WARNING
Stormshielddoes not guarantee the proper functioning of the product if you do not follow these
instructions.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 20/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://thalesdocs.com/ctp/cm/latest/reference/kmip-ref/index.html#specifying-ldap-and-multi-domain-client-usernames-in-kmip-certificates

 NOTE:
The maximum number of simultaneous connections to the KMS server depends on your
infrastructure and the KMS configuration.

5.3.7 cache parameter

JSON object that describes the configuration of the cache. Set the values according to your
configuration, e.g., available memory. It includes the following objects:

Parameter Description Type Optional/
mandatory

enable Activation status of the cache (true by default). Boolean Optional

max_cache_capacity Maximum capacity of the cache (100 MB by
default).

Integer in MB Optional

max_object_size Maximum size of a cached object in KB (100
KB by default).
OpenId, jwks and remote configurations (cse-
config) are cached. Set a value high enough to
store these objects.

Integer in MB Optional

max_object_lifetime Lifetime of a cached object (1440 min by
default).
We advise against exceeding the lifetime of
tokens provided by the identity providers.

Integer in
minutes

Optional

5.3.8 logs parameters

JSON object that allows configuring how to display the logs in the new format. If the object is
missing in the config.json file, only the logs with the old format are displayed. It includes the
following objects.

For more information, see the section Managing logs.

Parameter Description Type Optional/
mandatory

enable Enable log display. Boolean Mandatory

formats Version of the log format to enable.
The prescribed values are:

l ["v1", "v2"] if all logs are displayed,

l ["v2"] if only logs with the new format are
displayed,

l ["v1"] if only logs with the old format are
displayed,

l [] if no logs are displayed.

String list Mandatory if
enable is set
to true

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 21/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter Description Type Optional/
mandatory

kinds Log family to which the log belongs.
Prescribed values:

l domain: Stormshield KMaaS business
operation logs.

l system: Logs relating to the operations
concerning the environment.

l http: Logs relating to the HTTP operations of
the Stormshield KMaaS.

String list Mandatory if
format is set
to v2

severities Level of severity of the log.
Prescribed values:

l emerg: The system is unusable,

l alert: The problem must be fixed
immediately,

l crit: Critical error,

l err: Non-critical error,

l warning: The operation was successful but
generated a warning,

l notice: Unusual event not requiring
corrective action,

l info: Normal operation information message,

l debug: Information useful to developers for
troubleshooting the application.

String list Mandatory if
format is set
to v2

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
5. CONFIGURING THE STORMSHIELD KMAAS

Page 22/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

6. Configuring KEKs
The Stormshield KMaaS uses key encryption keys, i.e., KEKs, to wrap and unwrap Data
Encryption Keys (DEKs). The different services using the Stormshield KMaaS API (i.e., KACLS,
Stormshield SDK) provide the DEKs to encrypt/decrypt data.

The KEKs are used by all the features of Stormshield KMaaS.

There are two ways to store keys:

l Standalone mode: KEKs are stored in plaintext in the /etc/stormshield/cse/keks.json file on
the server.

l KMS mode: KEKs are stored in a Key Management System (KMS). They are selected in the
KMS by using the value of the kacls_kek_label parameter in the config.json file. They are
refreshed regularly, based on the value of the keks parameter in the config.json file. See
keks parameter.

KEKs are highly sensitive items in terms of security. You must follow the ANSSI
recommendations concerning their life cycle.

6.1 Configuring KEKs in standalone mode

6.1.1 Generating KEKs

You can configure two kinds of keys in the Stormshield KMaaS :

l KEKs and Master encryption keys (i.e., MKEK) for symmetric encryption use cases,
l KEKS for asymmetric encryption use cases with the Key Access Service.

The Stormshield KMaaS does not generate KEKs, so you must create them beforehand.

Generating KEKs and MKEKs for symmetric encryption

KEKs for symmetric encryption are 256-byte AES-256 keys listed in the keks.json file in the
form of base64-encoded character strings.

To create KEKs, you can use OpenSSL for example:

l On a Red Hat system, install OpenSSL by using the following command:
yum install openssl.

l On a Linux system, install OpenSSL using the package manager corresponding to your
distribution.

l With the rand command, data directly encoded in base64 can be generated:
openssl rand -base64 32

l To improve the security of the Stormshield KMaaS, you can optionally use OpenSSL to
generate Master encryption keys (i.e., MKEK). An MKEK is used to encrypt your KEKs so
that they are not exposed in clear text in the configuration file.

The MKEKs must be as follows:

l They must be 256 bits in size,
l They must be base64-encoded,
l They must encrypt the KEKs with a 12 byte initialization vector and a 16 byte

authentication tag.

The diagram below illustrates how the MKEK encrypts KEKs.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 23/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/le-referentiel-general-de-securite-version-20-les-documents
https://cyber.gouv.fr/le-referentiel-general-de-securite-version-20-les-documents

For more information on aes-256-gcm encryption to generate the MKEK, the encrypted KEK, the
initialization vector and the tag, see the ANSSI document ANSSI-PG-083.

If you are using at least one KEK encrypted by an MKEK, you must declare the MKEK_VALUE
environment variable containing the value of the MKEK encryption key before starting the
Stormshield KMaaS.

Generating asymmetric KEKs for KAS rewrap

The asymmetric KEKs are only used for wrapping and unwrapping operations via the
kas/rewrap route. They must be as follows:

l 4096-bit RSA key pairs,
l Each key pair consists of a private and a public key,
l The public key OID must be 1.2.840.113549.1.1.1.

They are listed in the keys section of the keks.json file. For more information, refer to section
Adding KEKs to the file.

The procedures for managing and securing the files are the same as for symmetric keys. For
more information, refer to section Generating KEKs and MKEKs for symmetric encryption.

To create an asymmetric RSA key pair with OpenSSL:

1. Create the 4096-bit private key:
openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_
keygen_bits:4096

2. Extract the public key:
openssl rsa -pubout -in private_key.pem -out public_key.pem

6.1.2 Preparing the key encryption key file

The Stormshield KMaaS manages key encryption keys, i.e., KEKs, and stores them in the
keks.json file. This file must be saved in the directory /etc/stormshield/cse.

Creating the KEK file

In RPM mode, a file template can be found in /etc/stormshield/cse to assist you.

l Create your own KEK file from the copy of the template using the following command:
cd /etc/stormshield/cse
cp --preserve keks.json.template keks.json

In Docker mode, the file is located in the dedicated directory you have created during
installation. For more information, see Installing the Stormshield KMaaS via a Docker image.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 24/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/publications/recommandations-de-securite-pour-larchitecture-dun-systeme-de-journalisation

Assigning access privileges to the file

1. Assign the read and write access privileges held by the current user to the config.json file
and read access to the current group:
chmod u=rw,g=r,o= keks.json

2. Set stormshield-cse as the file owner.
chown stormshield-cse keks.json

If access privileges are too permissive, a warning log will be generated when the Stormshield
KMaaS starts, but will not prevent it from launching.

6.1.3 Adding KEKs to the file

After you have generated your KEKs, encrypted or not, add them manually to the keks.json file.

The same file can include all types of KEKs: encrypted/not encrypted and
symmetric/asymmetric.

Parameter Description Optional/
mandatory

tenant_id UUID v4 of your tenant, the same that you have specified for the
External key service.

Mandatory

active_kek_id ID of the active KEK that will be used to encrypt keys for
symmetric encryption.

Mandatory

keks:
JSON object array containing the definition of non encrypted KEKs for symmetric encryption.

id Unique ID generated in UUID v4 format. Mandatory

kek_b64 Value of the KEK.

encrypted_keks:
JSON object array containing the definition of the MKEK-encrypted KEKs for symmetric encryption.

id Unique ID generated in UUID v4 format. Mandatory

encrypted_kek_
b64

Value of the encrypted KEK. It must imperatively be generated
using the aes-256-gcm encryption algorithm.

crypto_material l crypto_context: object containing the following fields, generated
while encrypting the KEK with the MKEK:
- iv: initialization vector
- tag: authentication tag

l encryption_algorithm: must be aes-256-gcm

l m_kek_location: information about the location of the MKEK
used to encrypt the KEK
- key_name: name of the environment variable containing the
MKEK value
- type: must be env

keys:
JSON object array containing the definition of the asymmetric KEKs used for KAS rewrap.

kid Unique ID generated in UUID v4 format. Mandatory

private Value of the private key (PEM format in base64). Mandatory

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 25/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter Description Optional/
mandatory

public Value of the public key (PEM format in base64). Mandatory

active Indicates if the key is currently enabled. Mandatory

Generate v4 UUIDs with any tools of your choice (e.g., UUID Generator).

 EXAMPLES
The file contents below are given simply as examples and must not be used as such in your
Stormshield KMaaS configuration.

{
 "tenants": [

{
 "tenant_id": "3a5f06fe-bee2-444b-bf76-b5ead30327c0",
 "active_kek_id": "fd7e4c16-6199-40a3-9bce-3c82a9e31e66",
 "keks": [

{
 "id": "fd7e2c15-6199-40a3-9bce-3c82a9e31e66",
 "kek_b64": "9i6NnOFeABODElB+ujySsqK74PPVlW6dhy6mvQt+RaQ="
 }
],
 "encrypted_keks": [],
 "keys": [

{
 "kid": "96b2f83d-df4e-4d49-b662-bcde91a8764f",
 "private":
"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQ0KTUlJSktBSUJBQUtDQWd[...]
 "public":
"LS0tLS1CRUdJTiBSU0EgUFVCTElDIEtFWS0tLS0tCk1JSUNDZ0tDQWdFQXlsWDNE[...]
 "active": true
 }
]
 }
]
}

6.1.4 Renewing a symmetric encryption KEK

When renewing a KEK, previous keys must remain accessible for unwrapping, and the new KEK
must not be used until it has been deployed on all Stormshield KMaaS servers.

1. Add a new KEK to the keks.json file:

a. Retrieve the keks.json file on one of the servers.

b. Generate a new AES 256 KEK.

c. Add this KEK to the file and assign a new unique ID to it.

2. Publish the keks.json file successively on each server:

a. Replace the keks.json file with the one modified in step 1. Ensure that you keep the
same access privileges as for the existing file.

b. Run the restart command on the server.
The server will restart and reload its list of KEKs from the keks.json file. The active KEK
does not change for the moment.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 26/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.uuidgenerator.net/version4

3. Set the new active KEK in the keks.json file:

a. Edit the keks.json file again.

b. Change the value associated with active_kek_id so that it points to the ID of the KEK
generated in step 1.

4. Publish the keks.json file again on all the servers.
On each successive server:

a. Replace the keks.json file with the one modified in step 3. Ensure that you keep the
same access privileges as for the existing file.

b. Run the restart command on the server.
The server will restart and reload its list of KEKs from the keks.json file. The active KEK is
changed and the server is ready to wrap keys with the new KEK.

In step 4, if a wrapping request is submitted on a server that uses the new KEK, all the
other servers can respond to an unwrapping request regardless of their status, since
they all know the new key.

6.2 Configuring symmetric encryption KEKs in KMS mode

6.2.1 Requirements

To use the Stormshield KMaaS with a key management system (KMS), you must meet the
following requirements:

l The version of the protocol used for connecting to the KMS must be KMIP 1.4,
l The algorithm used for wrapping KEKs must be AES-GCM.

6.2.2 Generating symmetric encryption KEKs in the KMS

In the interface of the KMS, create a new key with the following values:

name <name_of_your_kek>

algorithm AES-256

exportable true

usage not necessary

custom attribute x-sds-kacls-kek-label:<my_kacls_keks_label>
Label that identifies all your KEKs. It must match the value of the kacls_
kek_label field in the config.json file.

x-sds-kacls-tenant-id:<UUIDv4>
Identifier of your tenant in UUID v4 format. This ID must match the one
specified for the External key service.

The KMIP client must be allowed to use this key.

When the Stormshield KMaaS is being initialized, all KEKs that match the x-sds-kacls-kek-label
label will be retrieved, regardless of their status in the KMS.

While all retrieved KEKs can be used for unwrap operations, only the most recent key of each
tenant will be used for encryption operations. This particular KEK is identified by the is_active_
kek:true field in logs.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 27/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

6.2.3 Renewing KEKs in the KMS

For greater security, you can regularly renew the active KEK. To do so, generate a new KEK in
the KMS. The Stormshield KMaaS will automatically import this KEK as the active key when the
keys are refreshed. Older keys will be kept for decryption operations.

The Thales KMS does not allow more than 200 KEKs to be managed. Please do not exceed this
limit.

If the KEK list refresh operation fails, the list of current keys will be kept and service will not be
disrupted. The Stormshield KMaaS will refresh the key list again when a periodic or one-off
refresh operation is triggered.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
6. CONFIGURING KEKS

Page 28/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

7. Using the Stormshield KMaaS in secure mode
(HTTPS, KMS)

To secure your Stormshield KMaaS, Stormshield recommends that you:

l Secure connections between the Stormshield KMaaS components with HTTPS.
In the config.json file, fill-in the https.credentials section.
For more information, refer to section https parameter.

l Set up a key management system (KMS) to store your KEKs. In this case, you will use
secure protocol KMIP.
In the config.json file, fill-in the kmip_configuration section.
For more information, refer to section kmip_configuration parameters.

l Configure the appropriate TLS ciphers.
For more information, refer to section Configuring TLS ciphers below.

7.1 Configuring TLS ciphers

When the Stormshield KMaaS is configured in HTTPS, it uses NodeJS which depends on
OpenSSL for cryptographic operations.

In RPM mode, by default, the service starts with the following cipher list:

TLS 1.3

l TLS_AES_256_GCM_SHA384
l TLS_AES_128_GCM_SHA256
l TLS_AES_128_CCM_SHA256
l TLS_CHACHA20_POLY1305_SHA256

TLS 1.2

l ECDHE-ECDSA-AES256-GCM-SHA384
l ECDHE-RSA-AES128-GCM-SHA256
l ECDHE-RSA-AES256-GCM-SHA384

In Docker mode, the default cipher list is the same as NodeJS.

To communicate more securely when using the Stormshield KMaaS, you can restrict the list of
ciphers allowed during TLS operations.

The ciphers used are important security elements. Refer to ANSSI documentation SDE-NT-35 on
TLS ciphers.

Note that if you use SELinux to secure the machines, the list of TLS algorithms allowed on the
machine may change. This may prevent the Stormshield Key Management as a service from
starting or cause incompatibility with external resource retrieval. In this case, you must adjust
the list of algorithms allowed by the Stormshield Key Management as a service by following the
procedure below.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
7. USING THE STORMSHIELD KMAAS IN SECURE MODE (HTTPS, KMS)

Page 29/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/

7.1.1 Modifying the list of TLS ciphers in Docker mode

l Declare the NODE_OPTIONS environment variable:
NODE_OPTIONS=--tls-cipher-list=<liste-of-tls-algorithms>

 EXAMPLE
docker run -e "NODE_OPTIONS=--tls-cipher-list=TLS_AES_128_GCM_
SHA256:TLS_AES_256_GCM_SHA384" stormshield/kmaas:<version>

7.1.2 Modifying the TLS cipher list in RPM mode

1. Add the cipher_list.conf file in the /etc/systemd/system/cse.service.d directory.

2. Add the following lines in this file:
[Service]
Environment=NODE_OPTIONS=--tls-cipher-list=#CUSTOM_CIPHER_LIST#
- where -
#CUSTOM_CIPHER_LIST# represents the list of the desired ciphers, separated by ":".

 EXAMPLE
[Service]
Environment=NODE_OPTIONS=--tls-cipher-list=TLS_AES_128_GCM_SHA256:TLS_AES_256_
GCM_SHA384:

The cipher format must match the following rules:
l The Stormshield KMaaS does not support the following cryptographic suites, nor the "!",

"+", and "-" operators.
l You must use the OpenSSL cipher format, and not the standard format.

To list ciphers with both their standard names and OpenSSL names, run the command:
openssl ciphers -stdname.
To convert a standard cipher name to the OpenSSL format, run the command:
openssl ciphers -convert STANDARD_CIPHER_NAME_TO_CONVERT.

3. If the list contains valid but not recommended ciphers, a warning log is issued. If a cipher is
unknown, an error is issued and the service does not start.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
7. USING THE STORMSHIELD KMAAS IN SECURE MODE (HTTPS, KMS)

Page 30/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

8. Configuring proxy access
If the Stormshield KMaaS is located behind a proxy in your infrastructure, the service must be
configured to enable the use of this proxy. To do so, add the URL of the proxy and any
exclusions to the configuration file.

8.1 In Docker mode
l Declare the following environment variables to configure the proxy:

o https_proxy: defines the proxy URL,
o no_proxy: defines the endpoints excluded from the proxy.

 EXAMPLE
Example of a Docker command declaring environment variables:
docker run -v /my-kmaas-config-folder:/etc/stormshield/cse -p 443:3000 -
e https_proxy="https://my-proxy.my-domain" -e
no_proxy="domain.com,192.168.1.10,2001:67c:2e8:22::c100:68b/128"
stormshield/kmaas:<version>

8.2 In RPM mode

1. Run the following command:
systemctl edit cse.service
The override.conf configuration file is created in the /etc/systemd/system/cse.service.d
directory if it was installed in the default directory.

2. Edit the file and copy the following text containing the environment variable for the proxy's
URL:
[Service]
Environment="https_proxy=https://my-proxy.my-domain"

Where https://my-proxy.my-domain is the URL of the proxy used.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
8. CONFIGURING PROXY ACCESS

Page 31/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

3. If you need to exclude certain endpoints from the proxy, declare them in the same file via
the no_proxy environment variable. The possible values for this variable are the following:
l The * character means that all endpoints are excluded. This is equivalent to disabling the

proxy.
l A domain, for example domain.com,
l A domain suffix, for example .domain.com,
l A v4 or v6 IP address, for example 192.168.1.10 or 2001:67c:2e8:22::c100:68b,
l A v4 or v6 IP address in CIDR, for example 172.30.0.0/16 or

2001:67c:2e8:22::c100:68b/128.

The different values must be separated by commas.

 EXAMPLE
Example of a file cse.service in which the proxy is configured and different
endpoints are excluded from the proxy:
[Service]
Environment="https_proxy=https://my-proxy.my-domain"
Environment="no_
proxy=domain.com,192.168.1.10,2001:67c:2e8:22::c100:68b/128"

4. Reload the systemd service using the following command:
systemctl daemon-reload

5. Start the systemd service using the following command:
systemctl start cse
A startup log indicates that the service is launched in proxy mode. For more information,
refer to Stormshield KMaaS Log Guide.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
8. CONFIGURING PROXY ACCESS

Page 32/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

9. Backing up and restoring the Stormshield
KMaaS files

In Docker mode, you must configure your orchestrator to guarantee data persistence.
Implement a regular file backup strategy, as well as secure file storage on a separate
infrastructure.

In RPM mode, Stormshield recommends that you deploy Stormshield KMaaS in a cluster to
improve performance and limit the impact if a failure occurs. However, some of the files used
by the service and the configuration of the server must be backed up if you have deployed the
solution via an RPM.

9.1 Backing up Stormshield KMaaS files
l Back up the files below every time changes are made:

Name Description Level Consequences if file is lost

config.json File that describes the configuration of the
Stormshield KMaaS server

Moderate Configuration must be
rebuilt

keks.json File containing all the KEKs Very high Users’ encrypted data
cannot be decrypted

HTTPS certificates Files used for the HTTPS connection Moderate Configuration must be
rebuilt

KMS certificates Files used for the KMS connection Moderate Configuration must be
rebuilt

9.2 Restoring the files in Docker mode

In Docker mode, the various configuration files are made available to containers via a volume. If
one of the containers fails, recreate the Stormshield KMaaS container so that the configuration
files are automatically taken into account.

For more information, please refer to your orchestrator documentation.

9.3 Restoring the files in RPM mode

If any node of the cluster fails, follow the procedure below to restore files on each node:

1. Disconnect the node from the cluster.

2. Reconfigure the Red Hat instance if necessary.

3. Reinstall the service if necessary.

4. Deploy the backed up files:
l config.json
l keks.json
l Certificates for HTTPS
l Certificates for KMS

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
9. BACKING UP AND RESTORING THE STORMSHIELD KMAAS FILES

Page 33/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

5. Restart the service and check whether it runs.

6. Reconnect the node(s) of the cluster.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
9. BACKING UP AND RESTORING THE STORMSHIELD KMAAS FILES

Page 34/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

10. Key Access Control List Service (KACLS)
The KACLS is a solution in which corporate data managed in the Google Workspace ecosystem
can be protected, edited and consulted. Google Workspace is Google’s cloud-based application
suite for professionals. For more information, refer to the Google Workspace documentation.

The KACLS relies on Google Client Side Encryption (CSE), the end-to-end encryption method that
Google offers for its Google Workspace applications. CSE is configured in the Google
administration console. This technology is available only on Chrome or Microsoft Edge
(Chromium) browsers. For more information on supported browsers, refer to the Google Client
Side Encryption documentation, section Browser requirements.

Google generates DEKs (Data Encryption Keys) to encrypt files. Before such keys are stored on
Google servers, the Stormshield KMaaS wraps them using KEKs (Key Encryption Keys).

Stormshield KMaaS is installed in your on-premise or cloud-based infrastructure; KEKs are
therefore stored with you and never sent to Google servers.

Before performing cryptographic operations, the KACLS first conducts a double verification:

l Authentication: checks the identity of the user requesting the operation,
l Authorization: checks the user’s access privileges for the file to encrypt/decrypt.

The KACLS generates logs for all the operations that it performs.

 NOTE
The use of the solution in any way other than as described in the documentation is not managed.
Alternatively, get in touch with Stormshield Support for clarification.

10.1 Understanding the requirements

10.1.1 Global requirements and recommendations on administrators and network rules

For information, refer to section Understanding the global requirements

10.1.2 Network requirements

The diagram and the table below describe the various streams of incoming and outgoing traffic
on the KACLS server. Configure your network to allow the following connections:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 35/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://workspace.google.com/
https://support.google.com/a/answer/10741897#reqs&zippy=%2Cconditions-requises-pour-le-cse-concernant-les-utilisateurs-internes
https://support.google.com/a/answer/10741897#reqs&zippy=%2Cconditions-requises-pour-le-cse-concernant-les-utilisateurs-internes

Description Protocol Source Source
port

Destination Destination port

The KACLS REST API HTTPS Google
application

* Stormshield
KMaaS

Depends on the
administrator's
configuration
(config.json)

Getting the
configuration of
OpenID
authentication

HTTPS Stormshield
KMaaS

* OpenID
endpoint

Specified by the
configuration of the
authentication service
(usually 443)

Getting the
configuration of the
JWKS authorization

HTTPS Stormshield
KMaaS

* JWKS endpoint Specified by the
configuration of the
authorization service
(usually 443)

Getting decryption
keys

KMIP
version
1.4

SDS for
Google
Workspace

* Client’s
infrastructure

Depends on the
administrator's
configuration (usually
5696)

 NOTE
In Docker deployment mode, you must expose the ports to the containers. For more information,
please refer to your orchestrator documentation.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 36/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

The content of the requests processed by the KACLS is in JSON format only. You can add the
following rules to your web firewall (WAF) or load balancer to ensure optimum protection:

l All HTTP requests are blocked except:
o The POST requests with a Content-Type header including "application/json".
o The GET and OPTIONS requests without a Content-Type header or with a Content-Type

header including "application/json".

10.2 Deploying the KACLS infrastructure

The table below lists the various steps involved in deploying the KACLS.

Click on a link to open the corresponding procedure in this guide.

Steps Description

1 Configuring the identity provider and Configuring Google Workspace Client-side
encryption

2 Setting up the infrastructure and install the Stormshield KMaaS

3 Configuring the config.json file and Configuring the KACLS

4 Configuring Key Encryption Keys (KEKs)

l Configuring keys in KMS mode

- or -

l Configuring the keks.json file

5 Setting up a network configuration that can be reached via Google Workspace

6 Running the Stormshield KMaaS

7 Checking system health

8 Configuring load balancing

9 (Optional) Using the Stormshield KMaaS for Google Workspace in HTTPS and Configuring
TLS ciphers

10 Setting up logging

11 (Optional) Customizing the authorization rules by applying an OPA policy and
Customizing the authorization rules

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 37/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

#Prereq
#kekfile

10.2.1 Setting up the Stormshield KMaaS in Google Workspace

In the table below are the various steps involved in adding Stormshield KMaaS in Google
Workspace. Click on a link to open the corresponding procedure in the Stormshield KMaaS guide
or in Google help.

Steps Description

1 Setting up your external key service

2 Connecting Google Workspace to the external key service

3 Connecting Google Workspace to the Identity provider

4 Indicating the well-known file in the config.json file

5 Enabling the service for users: Drive, Meet, Calendar, Gmail

10.3 Configuring the KACLS

kacls parameters

The KACLS is configured in the kacls section of the config.json file. You can configure it
independantly for each tenant. The template for KACLS configuration block is as follows:

 "kacls": {
 "enable": true,
 "user_authentication": {
 "enable_wellknown_cse_discovery": "_ENABLE_WELLKNOWN_CSE_DISCOVERY_",
 "idps": [

{
 "discovery_uri": "_AUTHENTICATION_OPEN_ID_CONFIGURATION_URL_",
 "client_id": "_AUTHENTICATION_AUDIENCE_"
 },

{
 "jwks_uri": "_IDPS_JWKS_URL_",
 "audience": "_IDPS_AUDIENCE_",
 "issuer": "_IDPS_ISSUER_"
 }
]
 },
 "admin_authentication": [

{
 "discovery_uri": "_ADMIN_AUTHENTICATION_DISCOVERY_URI_",
 "client_id": "_ADMIN_AUTHENTICATION_ISSUER_"
 }
],
 "wrapprivatekey_authentication": [

{
 "discovery_uri": "_WRAPPRIVATEKEY_AUTHENTICATION_DISCOVERY_URI_",
 "client_id": "_WRAPPRIVATEKEY_AUTHENTICATION_ISSUER_"
 }
],
 "migration": {
 "enable": "_ENABLE_",
 "kaclstokacls_token": {
 "kid": "_KACLS_TO_KACLS_KEY_",
 "format": "_FORMAT_",
 "key": "_KEY_",
 "duration": "_DURATION_"
 },
 "acls": {

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 38/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/10801691?hl=en
https://support.google.com/a/answer/10742487?hl=en
https://support.google.com/a/answer/10743588
https://support.google.com/a/answer/10745596

 "kacls_urls": ["_ALLOWED_KACLS_URL_"]
 }
 },
 "delegate": {
 "enable": "_ENABLE_",
 "authentication": {
 "key": "_PRIVATE_KEY_BASE64_"
 }
 },
 "keys": {
 "users_private_keys": {
 "crypto_backend": {
 "id": "_CRYPTO_BACKEND_ID_"
 }
 }
 },
 "crypto_backends": [

{
 "id": "_CRYPTO_BACKEND_ID_",
 "name": "_CRYPTO_BACKEND_NAME_",
 "type": "_CRYPTO_BACKEND_TYPE_",
 "configuration": {
 "host": "_HOST_",
 "port": "_PORT_",
 "vendor": "_VENDOR_",
 "model": "_MODEL_",
 "credentials": {
 "key": "_KEY_",
 "cert": "_CERT_",
 "ca": "_CA_"
 },
 "domain_id": "_KMS_CRYPTO_BACKEND_DOMAIN_ID_"
 }
 }
],
 "policy_enforcement": {
 "enable": false,
 "type": "_POLICY_ENFORCEMENT_TYPE_",
 "opa_server": {
 "url": "_URL_",
 "authentication": {
 "type": "basic",
 "user_id": "_USER_ID_",
 "password": "_PASSWORD_"
 }
 }
 }
 },

Parameter Description Type Optional/
mandatory

enable Enables or disables the KACLS feature,
KACLS .

Boolean Mandatory to use the KACLS
feature.

user_authentication parameters

Object containing the configurations that allow the client to authenticate.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 39/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter Description Type Optional/
mandatory

enable_wellknown_cse_
discovery

Activated by default (true). Enables the use of
the .well-known remote configuration to
validate user authentication.

Boolean Optional

idps Object array containing the configuration of the
identity providers for client authentication. It
must include either both elements "discovery_
uri" and "client_id", or the three elements "jwks_
uri", "audience" and "issuer":

l discovery_uri: URL to the OpenID JSON
configuration file,

l client_id: recipient of the JWT authentication
token (see RFC 7519),

l jwks_uri : URL to the JSON Web Key Set file,

l audience: recipient of the JWT
authentication token (see RFC 7519),

l issuer: issuer of the JWT authentication
token (see RFC 7519).

An entry must be added for each identity
provider.
For more information on the values of the
elements, see Retrieving import values.

Array Optional

The values of the authentication parameters depends on the method used:

l OpenID configuration file (for OneLogin for instance):
o _AUTHENTICATION_OPEN_ID_CONFIGURATION_URL_ is the URL for the OpenID configuration file.

For OneLogin authentication, it must resemble:
https://<domain>.onelogin.com/oidc/2/.well-known/openid-configuration.
For Google authentication, it is similar to:
https://accounts.google.com/.well-known/openid-configuration.

o _AUTHENTICATION_AUDIENCE_

For OneLogin authentication, it corresponds to the audience setting.
For Google authentication, it corresponds to the OAuth Client ID setting.

l JSON Web Key Set file (JWKS):
o _IDPS_JWKS_URL_ corresponds to the URL for the JWKS file that contains the signature

and/or encryption keys.
For Google authentication, it is similar to:
https://www.googleapis.com/service_accounts/v1/jwk/gsuitecse-tokenissuer-
drive@system.gserviceaccount.com

o _IDPS_AUDIENCE_
For Google authentication, it corresponds to the OAuth Client ID setting.

o _IDPS_ISSUER_ corresponds to the issuer of the authentication token.
For Google authentication, it is similar to gsuitecse-tokenissuer-
drive@system.gserviceaccount.com

For more information, see section Retrieving import values

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 40/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

admin_authentication parameter

JSON object array describing how to validate the authentication of administration routes via a
local configuration.

Parameter Description Type Optional/
mandatory

discovery_uri URL to the OpenID JSON configuration
file.

String Optional

client_id Recipient of the JWT authentication
token (see RFC 7519).
An entry must be added for each
identity provider.

String Optional

wrapprivatekey_authentication parameter

JSON object array describing how to validate the authentication of /wrapprivatekey routes via a
local configuration. For more information, see Migrating an external key service to another.

Parameter Description Type Optional/
mandatory

discovery_uri URL to the OpenID JSON configuration file. String Optional

client_id Recipient of the JWT authentication token (see
RFC 7519).
An entry must be added for each identity
provider.

String Optional

migration parameter

JSON object array containing information for the migration of a KACLS to another or the use of a
backup KACLS.

Parameter Description Type Optional/
mandatory

enable Enables or disables the migration from one
KACLS to another.

Boolean Optional

kaclstokacls_token l kid: identifier used to generate a JWKS.

l format: format of the key (PEM).

l key: private key in PEM format. Used to form
JWT authentication tokens and generate a
JWKS making it possible to check these
tokens.

l duration: lifetime of the generated JWT
authentication token.

Array Mandatory if
enable is set
to true

acls l kacls_urls: list of allowed KACLS URLs. Must
begin with "https://".

Array Mandatory if
enable is set
to true

crypto_backends parameter

JSON object array containing the definition of the backend component performing the
cryptographic operations.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 41/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

When using a crypto backend of type "kms" with a KMS domain, the domain_id values of all the
tenant configurations must imperatively be the same and match the domain used by the KMIP
configuration.

For more information, refer to section kmip_configuration parameters and the Thales
documentation.

 WARNING
Stormshield does not guarantee the proper functioning of the product if you do not follow these
instructions.

Parameter Description Type Optional/
mandatory

id ID of the cryptographic backend in the form of a
UUID v4 that you generate.

String in UUID
format

Mandatory

name Name of your choice for the cryptographic
backend.

String Mandatory

type Cryptographic backend type. The possible
values are:

l kms to use the KMS API

l node to use the KACLS

String Mandatory

configuration:
JSON object array containing the cryptographic backend configuration in the "kms" mode.

host URL of the KMS String Mandatory in
"kms" mode"

port KMS port String Mandatory in
"kms" mode"

vendor KMS vendor (Thales) String Mandatory in
"kms" mode"

model KMS model (Ciphertrust) String Mandatory in
"kms" mode"

credentials It includes the following fields:

l ca_certificate_path: path to the certification
authority.

l client_certificate_path: path to the KMS client
certificate.

l client_private_key_path: path to the KMS user
key.

String Mandatory in
"kms" mode"

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 42/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://thalesdocs.com/ctp/cm/2.5/admin/cm_admin/domains/index.html
https://thalesdocs.com/ctp/cm/2.5/admin/cm_admin/domains/index.html

Parameter Description Type Optional/
mandatory

domain_id UUID v4 pointing to the Ciphertrust KMS
domain to be used by the application. Only
used for the KMS REST API client.
For the KMIP client, you must define the KMS
domain in the mTLS certificate (See kmip_
configuration parameters).
If not provided, the root domain is used.

 WARNING
If you want to use the root domain, do not
add its UUID in the configuration file as it
is not UUID v4 compliant and will generate
errors. Simply remove the domain_id
setting from the file.

String Optional

Configuration of the cryptographic backend

A cryptographic backend is a tool used by the CSE for Gmail, allowing to choose the type of
encryption and signature that the KACLS will apply, including the Gmail private keys. Two
backend modes are available: 'node' for the KACLS, and 'kms' for the KMS.

The supported algorithms for each mode are:

Decryption algorithm Signature algorithm

'node' mode RSA/ECB/OAEPwithSHA-1andMGF1Padding,
RSA/ECB/OAEPwithSHA-256andMGF1Padding,
RSA/ECB/OAEPwithSHA-512andMGF1Padding

SHA1withRSA/PSS,
SHA256withRSA/PSS,
SHA512withRSA/PSS,
SHA1withRSA
SHA256withRSA
SHA512withRSA

'Node' mode
with the CVE-
2023-46809
enabled
(See the
limitations
below)

RSA/ECB/PKCS1Padding,
RSA/ECB/OAEPwithSHA-1andMGF1Padding,
RSA/ECB/OAEPwithSHA-256andMGF1Padding,
RSA/ECB/OAEPwithSHA-512andMGF1Padding

SHA1withRSA/PSS,
SHA256withRSA/PSS,
SHA512withRSA/PSS,
SHA1withRSA
SHA256withRSA
SHA512withRSA

'kms’ mode RSA/ECB/PKCS1Padding SHA1withRSA/PSS,
SHA256withRSA/PSS,
SHA512withRSA/PSS,
SHA1withRSA,
SHA256withRSA
SHA512withRSA

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 43/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

l With the 'kms' mode, be aware of the following:
o The KACLS is only compatible with the API of the Ciphertrust Manager from Thales.
o Only one version of the private keys associated with a Ciphertrust keyname is

supported. You should therefore not use the versioning feature of the Thales Ciphertrust
Manager KMS for the encryption or signature keys used for the KACLS for Gmail.

o For maximum security and flexibility, you can use a specific KMS key domain
(Ciphertrust domains) via the domain_id parameter. In this case, also verify that
dependent SDS products share the same domain (e.g., SDS Orchestrator). For more
information on this configuration, refer to the Thales documentation and contact your
KMS administrator.

o Since PKCS 1.5 message signing is not compatible with Ciphertrust's REST API, the KACLS
uses the KMIP protocol to perform signing operations. Configure the section kmip_
configuration of the config.json file to sign messages in PKCS 1.5.

l In ‘node’ mode, data encryption using the PKCS 1.5 algorithm is vulnerable, particularly to
the Marvin Attack. NodeJS version 20.11.1 has therefore removed the use of this algorithm
via CVE-2023-46809. As Google only supports PKCS 1.5 for message signature and
encryption, you must disable this CVE in NodeJS for the KACLS to use this feature.
To do so, in RPM mode:

1. Open the /etc/systemd/system/cse.service file.

2. Replace the ExecStart=/usr/bin/env node cse
- by -
ExecStart=/usr/bin/env node --security-revert=CVE-2023-46809 cse

This bypass is not useful if you are in 'kms' mode.

In Docker mode, CVE-2023-4680 is applied by default and you do not have to modify
cse.service. A warning log notifying that the CVE is disabled is issued when the KACLS starts,
which is normal.

 NOTE
If the HTTP proxy is enabled, you must exclude the KMS domain from the proxy via the no_proxy
environment variable. For more information, see the section Configuring proxy access.

Below is an example of a cryptographic backend configuration in "kms" mode with the Thales
Ciphertrust Manager KMS:

"crypto_backends": [
{

 "id": "3711cab6-83fc-4a97-9438-a1500edfd01a",
 "name": "My crypto tool",
 "type": "kms",
 "configuration": {
 "host": "https://web.ciphertrustmanager.local",
 "model": "ciphertrust",
 "vendor": "thales",
 "port": 443,
 "credentials": {
 "ca": "/etc/stormshield/cse/ca_kms.pem",
 "cert": "/etc/stormshield/cse/cert_kms.pem",
 "key": "/etc/stormshield/cse/key_kms.pem"
 }
 }
 }
],

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 44/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://thalesdocs.com/ctp/cm/2.2/admin/cm_admin/domains/index.html
https://people.redhat.com/~hkario/marvin/

"keys": {
 "users_private_keys": {
 "crypto_backend": {
 "id": "3711cab6-83fc-4a97-9438-a1500edfd01a"
 }
 }
}

keys parameter

Object containing the UUID of the cryptographic backend to be used for cryptographic
operations.

Parameter Description Type Optional/
mandatory

users_private_keys l crypto_backend: object defining the
cryptographic backend to be used to get
private keys.
- id: UUID of the cryptographic backend
defined in the "crypto_backend.id" object.

String Mandatory if
the crypto_
backend
object is
configured

delegate parameter

JSON object array containing the definition of the delegate software component performing the
delegation operations.

Parameter

authentication JSON object allowing to sign JWT tokens in
RS256. It includes the following field:

l key: private key signed in base64 and used
to sign authentication token.

Object Mandatory if
the enable
field is set to
true

enable Enable the delegation feature. Boolean Mandatory

policy_enforcement parameter

JSON object containing the configuration of the OPA Policy for the KACLS. For more information
about OPA Policy, refer to Implementing the authorization rules with Open Policy Agent.

Parameter

enable Enable the use of OPA rules for the feature. Boolean Mandatory for each
feature enabled
except the PKI.

type Kind of OPA policy to use.
The possible values are :

l opa_local: this mode uses local files
policy.wasm and policy.data.json. The file
names must be adapted according to the
feature used.

l opa_server: this mode uses a remote OPA
server.

String Mandatory if policy_
enforcement.enable is
set to true

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 45/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Parameter

opa_server:
JSON object describing the parameters required to access the OPA policy server. Stormshield guarantees
compatibility with OPA version 1.2.0.

url URL of data API exposed endpoints.
For more information, see OPA
documentation.
Example: If your rego package is
stormshield.kmaas and you have the
allow variable in this package, your url will be:
https://opa-
server/v1/data/stormshield/kmaas/allow
The authorized protocols are http and https.
Stormshield strongly recommends https in
production.

String Mandatory if policy_
enforcement.type is
set to opa_server

authentication JSON object describing the parameters
required to authenticate to the OPA policy
server. It includes the following fields:

l type: Type of authentication used to
connect to the policy server.
The prescribed value is "basic".

l user_id: Identifier of the user account used
to connect to the policy server. Mandatory
if authentication.type is set on "basic"

l password: Password of the user account
used to connect to the policy server.
Mandatory if authentication.type is set on
"basic"

Object Mandatory if type is
set to opa_server

For more information about Open Policy Agent, refer to section Implementing the authorization
rules with Open Policy Agent and Customizing the authorization rules.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 46/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/rest-api#data-ap
https://www.openpolicyagent.org/docs/rest-api#data-ap

10.4 Checking system health

After you have installed and run the Stormshield KMaaS, check that it is running correctly.

1. Use the status API route:
curl -H "Origin: <origin_url>" <my-cse-full-url>/status

where:

Parameter Value

<origin_url> The Stormshield KMaaS enforces across-origin resource sharing (CORS) rule to
guarantee that requests genuinely originate from the Google API. This rule makes it
possible to verify the origin HTTP header. The origins that are allowed are all URLs
of https://*.google.com type, for example:

l https://client-side-encryption.google.com

l https://admin.google.com

l Requests containing an incorrect origin header are rejected.

For more information, refer to the Google documentation Connect to your identity
provider for client-side encryption.

<my-cse-
full-url>

Full URL specified for the external key service. For more information, refer to
Specifying the External key service.

 EXAMPLE
curl -H "Origin: https://client-side-encryption.google.com"
https://cse.example.com/api/v1/a4670b0-4bc11-4290-a5bd-
498c2e1fb0b/status

2. If the system is running correctly, the status API return must be in the following form:
{"server_type":"KACLS","vendor_
id":"Stormshield","version":"4.3.0.2354","name":"name of my
CSE","operations_supported":
["wrap","unwrap","digest","rewrap","privilegedwrap","privilegedunw
rap","wrapprivatekey","privatekeysign","privatekeydecrypt","privil
egedprivatekeydecrypt"]}

10.5 Configuring the identity provider

The Stormshield KMaaS uses an identity provider (IDP) to authenticate end users, manage their
access permissions and their life cycles. Configure the provider of your choice and create an
OpenID Connect application.

The Stormshield KMaaS is compatible with JWT tokens signed with the RS256 algorithm.

The procedure below describes the configuration with One Login. For more information, refer to
the One Login documentation.

10.5.1 Specifying the redirect URL

In OpenID Connect, select the Configuration menu, then specify the redirect URI in the Redirect
URI's field. For more information, refer to the Google documentation Connect to your identity
provider for client-side encryption.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 47/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://support.google.com/a/answer/10743588#zippy=%2Coption-to-connect-to-your-idp-using-a-well-known-file
https://support.google.com/a/answer/10743588#zippy=%2Coption-to-connect-to-your-idp-using-a-well-known-file
https://developers.onelogin.com/openid-connect
https://support.google.com/a/answer/10743588#zippy=%2Coption-to-connect-to-your-idp-using-a-well-known-file
https://support.google.com/a/answer/10743588#zippy=%2Coption-to-connect-to-your-idp-using-a-well-known-file

10.5.2 Retrieving import values

In OpenID Connect, select the SSO menu and take note of the ClientID and Issuer URL import
values:

These values will be used in the config.json file, in the tenants > user_authentication > idps
section of the Stormshield KMaaS. Below are a few examples:

l ClientID: 3e14f1a0-5814-0550-cy6e-0bd6abe5ty43540000
l Issuer URL (Well-known configuration): https://stormshield-

example.onelogin.com/oidc/2/.well-known/openid-configuration

For more information on declaring the identity providers in the Stormshield KMaaS, refer to
section Configuring the Stormshield KMaaS, tenants parameter.

10.5.3 Managing authentication tokens

According to the specifications provided by Google, the authentication token contains a JSON
Web Token (i.e., JWT). For more information, see the RFC7516 document.

The mandatory and optional fields expected by the KACL depending on the routes used are
listed in the following table:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 48/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc7516

Routes Mandatory
fields

Optional
fields

l wrap

l unwrap

l privilegedwrap,

l privilegedunwrap

l privatekeydecrypt,

l privatekeysign,

l privilegedprivatekeydecrypt

l privilegedprivatekeysign

l iss

l aud

l exp

l iat

l email

l google_
email

Authentication token to the KACLS:

l privilegedunwrap

They are used to authenticate a KACLS to another one in the context of a
migration.

l iss

l aud

l exp

l iat

l kacls_url

l resource_
name

delegate l iss

l aud

l exp

l iat

l email

l delegated_to

l resource_
name

wrapprivatekey l iss

l aud

l exp

l iat

For more information, refer to the Google documentation.

Authentication tokens related to delegation

The authentication tokens used by the encryption and decryption operations (i.e., wrap and
unwrap routes) in the context of a delegation operation are dynamically generated by the
Stormshield KMaaS (delegate route): for security reasons, and as recommended by Google,
these tokens have a lifetime of 15 minutes.

10.6 Configuring Google Workspace Client-side encryption

You must indicate the URL of the external key service and the identity provider in the Google
Workspace administration console.

For more information, refer to the Google documentation Use client-side encryption for users'
data.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 49/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://developers.google.com/workspace/cse/reference/authentication-tokens
https://support.google.com/a/topic/10742486?hl=en
https://support.google.com/a/topic/10742486?hl=en

10.6.1 Specifying the External key service

External key service is the section in the Google Workspace administration console in which
you specify information for the KACLS.

With theKACLS, several external key services can be used in your Google Workspace tenant's
administration console. For example, if you want separate services for each distinct
organizational unit (OU) in your organization for various Google applications (Meet, Drive, ...).

In standalone mode, you must enter a UUID for every tenant installed so that their associated
KEKs will be available. For further information, refer to the section Adding KEKs to the file.

If you are using a Key Management System (KMS), the tenant's UUID is included in the
attributes of the KEK. For more information, refer to the section Configuring symmetric
encryption KEKs in KMS mode.

With the KACLS, several tenants can be used on the same instance of the encryption service.
For example, if your organization has several domains, you can manage each tenant
independently for each domain.

An external key service must be specified for each tenant.

l The Name of the external key service can be shown in error messages that the end user will
see.

l The URL of the external key service consists of the following:

Address of the Stormshield KMaaS
instance that you are installing

E.g., https://cse.example.com/api/v1

Tenant UUID E.g., a4670b0-4bc11-4290-a5bd-498c2e1fb0bf
You must generate a v4 UUID to identify tenants, even
when there is only one on your instance.

 EXAMPLE
https://cse.example.com/api/v1/a4670b0-4bc11-4290-a5bd-498c2e1fb0b

Google applications will use this URL, so it must be a public address.

10.6.2 Specifying the identity provider (IDP)

For more information, refer to the Google documentation Connect to your IdP for CSE.

10.7 Using remote authentication

You can create a remote configuration file, cse-configuration, to share your authentication
credentials with external collaborators. This file must be in a directory /.well-known/, located at
the root of the domain (https://cse.${domain}/.well-known/). It makes it possible to verify the
signature of the user's token and indicate which identity providers to use.

The remote file will be looked up if the user_authentication section in the config.json file is not
filled in. It is retrieved during authentication via the URL:
https://cse.${domain_from_email_from_token}/.well-known/cse-configuration

This is a fixed URL. Ensure that it can be reached by using the Stormshield KMaaS.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 50/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/10743588

 NOTE
For security reasons, the routes privilegedwrap, privilegedunwrap, privilegedprivatekeydecrypt,
and wrapprivatekey are not allowed for remote authentication.

For more information, refer to the Google documentation Connect to identity provider for client-
side encryption website.

To create the remote authentication file:

l Create a file named cse-configuration. Its contents are as follows:

{
"name": "_IDP_NAME_",
"client_id": "_AUTHENTICATION_AUDIENCE_",
"discovery_uri": "_AUTHENTICATION_OPEN_ID_CONFIGURATION_URL_",
"grant_type": "_GRANT_TYPE_"
}

Parameter Description Type Authorized values Optional/
mandatory

name Name of the identity provider. String Optional

client_id OIDC (OpenID Connect) client ID that
the client application uses to get a
JWT.

String Mandatory

discovery_uri OIDC discovery URL, as defined in the
OpenID specification.

String Mandatory

grant_type OAuth traffic used for OIDC String implicit |
authorization_code

Optional

If you use the Google identity provider, the values of the authentication settings are as follows:

{
"name": https://accounts.google.com
"client_id": "37*********",
"discovery_uri": "https://accounts.google.com/.well-known/openid-configuration"
}

10.8 Using the KACLS with Drive, Meet and Calendar

The Stormshield KMaaS allows users to encrypt data for the following Google applications:

Application Encryption perimeter Availability Use

Google Drive Encrypting Google Drive confidential
documents.

l Windows and
macOS desktops
(Google Drive for
Desktop)

l iOS and Android
mobile devices

l well-known
remote file

l Local
configuration

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 51/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/10743588
https://support.google.com/a/answer/10743588

Application Encryption perimeter Availability Use

Google Meet Encryption of video conferences and calls
created with Google Meet

l Google
Workspace web
client

l iOS and Android
mobile devices

l well-known
remote file

l Local
configuration

Google
Calendar

Encrypting a meeting created with Google
Calendar: related description, attachments,
and Meet conference.

l Google
Workspace web
client

l iOS and Android
mobile devices

l well-known
remote file

l Local
configuration

10.8.1 Importing sensitive external files to Google Drive (Beta)

The KACLS supports the bulk importing of sensitive data into Google Drive. Data imported from
third-party storage are encrypted by the KACLS in Google Drive.

For more information, see the Google documentation.

This Beta feature is currently under development at Google.

10.8.2 Enabling Google Meet hardware use

To attend an encrypted Google Meet conference from a room equipped with Meet hardware, the
user must delegate authentication to the Meet hardware device.

Whenever the users try to connect to an encrypted Google Meet, they are asked to scan the
meeting QR code with their phone, using only the Google Lens application. Once authenticated
via their phone, they are connected to the encrypted meeting.

To enable delegation:

l In the local configuration file config.json, declare your authentication information in the
section tenantid - delegate.

For more information, refer to section delegate parameter.

10.8.3 Enabling external user access for Google Drive and Google Meet

You can share encrypted content with external users in Google Drive and invite external
participants to encrypted Google Meet conferences.

This feature will be available on mobile applications in a future release of the Stormshield
KMaaS.

To enable the Guest Access feature:

1. Create a dedicated identity provider for Google Drive and declare all desired external users
so that they can authenticate. Only declared users will be able to access shared encrypted
content. For more information, see Configuring the identity provider.

2. In the same way, create a dedicated identity provider for Google Meet.

3. In the Google Workspace administration interface, add the identity providers specific to
external users. For more information, refer to the Google documentation on configuring a
guest IdP for all external users.

Once the Guest Access feature has been enabled:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 52/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://workspaceupdates.googleblog.com/2023/07/import-files-to-google-drive-with-client-side-encryption-using-the-drive-api-beta.html
https://support.google.com/a/answer/14757842?hl=en&fl=1&sjid=7302167280917494260-NA
https://support.google.com/a/answer/14757842?hl=en&fl=1&sjid=7302167280917494260-NA

l When a document is shared via Google Drive to external users, they receive emails enabling
them to connect to the dedicated identity provider and view the document.
If the external users do not have a Google account, they must also validate their email
addresses with Google every 7 days.

l When you invite external users to an encrypted Google Meet conference, they receive
emails containing a link to join the encrypted conference directly. To do this, they must
authenticate to the dedicated identity provider.

If using the Guest Access feature, it is not yet possible to share data between participants using
a well-known file.

10.8.4 Enabling the use of a Google application via a remote file

l Configure your identity provider as described in the Google documentation Connect to your
identity provider for client-side encryption.

10.8.5 Enabling the use of a Google application in the local configuration

l In the config.json local configuration file, declare the client_id of your applications in the
user_authentication - idps section.

For example, if you use the Google Identity provider, this section of the config.json file should
be as follows for drivefs, drive-android, and drive-ios:

"user_authentication": {
 "idps": [
{

 "discovery_uri": "https://accounts.google.com/.well-known/openid-configuration",
 "client_id": "947318989803-
k88lapdik9bledfml8rr69ic6d3rdv57.apps.googleusercontent.com"
 },
{

 "discovery_uri": "https://accounts.google.com/.well-known/openid-configuration",
 "client_id": "378076965553-
g44pde5vvf113hdd8j84a32kl4e7hqa0.apps.googleusercontent.com"
 },
{

 "discovery_uri": "https://accounts.google.com/.well-known/openid-configuration",
 "client_id": "640853332981-
r48oo8ht2kl9v029vsgtatkh4gtue0pn.apps.googleusercontent.com"
 }
]
},

For more information, refer to the user_authentication parameters section.

Currently, sharing encrypted content with external users is only available on web applications.
This feature will be available on mobile applications in a future release.

10.9 Decrypting files and emails

To decrypt files and emails encrypted by the Stormshield KMaaS, you can use Google's
decryption utility decrypter.exe (Beta version):

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 53/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/10743588?sjid=8980839899596838753-EU
https://support.google.com/a/answer/10743588?sjid=8980839899596838753-EU

1. As the super-administrator of the Google Workspace domain, export encrypted data using
the export tool or Google Vault. For more information, refer to the Google documentation.
The export operation is only possible once every 30 days.

2. Decrypt encrypted data using Google's decrypter.exe utility (Beta version). For more
information, refer to the Google documentation.

10.10 Using the KACLS with Gmail

The KACLS can be used with Gmail. This feature is available with the web version of Gmail and
with the mobile application on Android and iOS.

Two modes are available:

l Gmail standard mode with encrypted keys stored at Google,
l Gmail advanced mode based on a Key management system (KMS) with keys stored in the

KMS.

Depending on the mode you choose, you need to know the limitations about the supported
algorithms. For more information, refer to the table in the section Configuration of the
cryptographic backend.

Stormshield recommends the use of different key pairs for encryption and signature. In this
case, repeat the step Encrypting users' private keys with the KACLS for each private key.

To help you using of Gmail with the client-side encryption service, you can implement the SDS
Orchestrator solution. It provides and manages encryption and signature keys for your Google
Workspace accounts. For more information, please contact your Stormshield sales
representative.

10.10.1 Using Gmail in standard mode

Configuring the KACLS

Modify the config.json file as described in the steps below: For more information, refer to the
Configuring the Key Access Service section.

1. Fill in the crypto_backend section, and assign the "node" value to the type field. Do not
fill in the configuration block. See crypto_backends parameter and Configuration of the
cryptographic backend.

2. In the id field of the keys section, enter the UUID of the cryptographic backend set in step
1. See keys parameters and Configuration of the cryptographic backend.

3. Fill in the authorization section with Gmail information as shown in Authorization
settings.

4. Fill in the wrapprivatekey_authentication section as shown in wrapprivatekey_
authentication parameters.

5. Optional. Fill in the admin_authentication section as shown in admin_authentication
parameters to perform privileged operations.

Encrypting users' private keys with the KACLS

Ensure that the KACLS is fully configured and operational before following the steps below.

For every private key to be encrypted, call up the /wrapprivatekey API route in POST with the
following headers and payload:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 54/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/14339894?hl=fr&visit_id=638527453297813842-941279386&p=export_data&rd=2
https://support.google.com/a/answer/11019500?

l URL: in the format "{protocol: http | https}://{kacls url}/api/v1/{tenantId}/wrapprivatekey",
where:
o {kacls url} is the URL of the key service that you have declared in Specifying the

External key service
o {tenantId} is your tenant's UUID.

l Mandatory headers:
o Content-Type: 'application/json',
o Connection: 'keep-alive',

l Payload:

Field Description

authentication Valid authentication token

private_key The user's private key encrypted in PEM
format, and base64-encoded

perimeter_id Optional string

supported_algorithms List of supported algorithms:[
'RSA/ECB/PKCS1Padding',
'RSA/ECB/OAEPwithSHA-1andMGF1Padding',
'RSA/ECB/OAEPwithSHA-256andMGF1Padding',
'RSA/ECB/OAEPwithSHA-512andMGF1Padding'
'SHA1withRSA',
'SHA256withRSA',
'SHA512withRSA',
'SHA1withRSA/PSS',
'SHA256withRSA/PSS',
'SHA512withRSA/PSS'
];

 EXAMPLE:
Request enabling the encryption of a private key, sent in POST over the /wrapprivatekey route:

{
"authentication": "eyJhbGciOiJSUzI1NiIsImtpZCI6ImFjZGEz...",
"private_key": "LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVk...",
"supported_algorithms": [

"RSA/ECB/PKCS1Padding",
"RSA/ECB/OAEPwithSHA-1andMGF1Padding",
"RSA/ECB/OAEPwithSHA-256andMGF1Padding",
"RSA/ECB/OAEPwithSHA-512andMGF1Padding,"
"SHA1withRSA",
"SHA256withRSA",
"SHA512withRSA"
"SHA1withRSA/PSS",
"SHA256withRSA/PSS",
"SHA512withRSA/PSS"

]
}

The response to this request is a JSON object named wrapped_private_key which contains a
string representing the encrypted private key.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 55/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Providing private keys to Google
l Enable Gmail and provide your users' encrypted private keys and certification chains. For

more information, refer to the Google documentation Gmail only: Set up your organization
for client-side encryption.
Certification chains must meet the following Google specifications:
o S/MIME certificate profiles,
o Set up rules to require S/MIME.

Using Gmail
l To use Gmail to send encrypted messages to internal or external users, refer to Google

documentation Learn about Gmail Client-side encryption.

10.10.2 Using Gmail in advanced mode based on a KMS

Configuring the KACLS

Modify the config.json file as described in the steps below: For more information, refer to the
Configuring the KACLS section.

1. Fill in the whole crypto_backend section, and assign the "kms" value to the type field.
See crypto_backends parameter and Configuration of the cryptographic backend.

 NOTE
If using a KMS domain, the domain_id values of all the tenant configurations must
imperatively be the same and match the domain used by the KMIP configuration.

2. In the id field of the keys section, enter the UUID of the cryptographic backend set in step
1. See keys parameters and Configuration of the cryptographic backend.

3. Fill in the authorization section with Gmail information as shown in Authorization
settings.

4. Fill in the wrapprivatekey_authentication section as shown in wrapprivatekey_
authentication parameters.

5. Optional. Fill in the admin_authentication section as shown in admin_authentication
parameters to perform privileged operations.

Encrypting users' private keys with the KACLS

Ensure that the Stormshield KMaaS is fully configured and operational before following the
steps below.

l For every private key to be encrypted, send a POST request to the /wrapprivatekey API route
with the following headers and payload:

l URL: in the format "{protocol: http | https}://{kacls url}/api/v1/{tenantId}/wrapprivatekey",
where:
o {kacls url} is the URL of the key service that you have declared in Specifying the

External key service
o {tenantId} is your tenant's UUID.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 56/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/13069736?sjid=2685394614286330134-EU&hl=fr
https://support.google.com/a/answer/13069736?sjid=2685394614286330134-EU&hl=fr
https://support.google.com/a/answer/7300887#zippy=%2Croot-ca%2Cintermediate-ca-certificates-other-than-from-issuing-intermediate-ca%2Cintermediate-ca-certificate-that-issues-the-end-entity
https://support.google.com/a/answer/7280976?hl=fr&ref_topic=9061730
https://support.google.com/mail/answer/13317990

l Mandatory headers:
o Content-Type: 'application/json',
o Connection: 'keep-alive',

ll Payload:

Field Description

authentication Valid administrator authentication token

private_key ID of the user's private key stored in the KMS,
and base64-encoded.

perimeter_id Optional string

supported_algorithms List of supported algorithms:
[
'RSA/ECB/PKCS1Padding',
‘SHA1withRSA’,
‘SHA256withRSA’,
‘SHA512withRSA’,
'SHA1withRSA/PSS',
'SHA256withRSA/PSS',
'SHA512withRSA/PSS'
];

public_key Public key of the user in PEM format, and
base64-encoded.

 EXAMPLE:
Request enabling the encryption of a private key, sent in POST over the
/wrapprivatekey route:

{
"authentication": "eyJhbGciOiJSUzI1NiIsImtpZCI6ImFjZGEz...",
"private_key": "LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVk...",
"supported_algorithms": [

"RSA/ECB/PKCS1Padding",
"SHA1withRSA/PSS",
"SHA256withRSA/PSS",
"SHA512withRSA",
"SHA512withRSA/PSS"

],
"public_key" : "e32tLS1CRUdJTiBSU0FgUFJJVkFURSBLRck..."

}

l For every private key to be encrypted, call up the /wrapprivatekey API route in POST with the
following headers and payload:

l URL: in the format "{protocol: http | https}://{kacls url}/api/v1/{tenantId}/wrapprivatekey",
where:
o {kacls url} is the URL of the key service that you have declared in Specifying the

External key service
o {tenantId} is your tenant's UUID.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 57/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

l Mandatory headers:
o Content-Type: 'application/json',
o Connection: 'keep-alive',

ll Payload:

Field Description

authentication Valid administrator authentication token

private_key ID of the user's private key stored in the KMS,
and base64-encoded.

perimeter_id Optional string

supported_algorithms List of supported algorithms:
[
'RSA/ECB/PKCS1Padding',
‘SHA1withRSA’,
‘SHA256withRSA’,
‘SHA512withRSA’,
'SHA1withRSA/PSS',
'SHA256withRSA/PSS',
'SHA512withRSA/PSS'
];

public_key Public key of the user in PEM format, and
base64-encoded.

 EXAMPLE:
Request enabling the encryption of a private key, sent in POST over the
/wrapprivatekey route:

{
"authentication": "eyJhbGciOiJSUzI1NiIsImtpZCI6ImFjZGEz...",
"private_key": "LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVk...",
"supported_algorithms": [

"RSA/ECB/PKCS1Padding",
"SHA1withRSA/PSS",
"SHA256withRSA/PSS",
"SHA512withRSA",
"SHA512withRSA/PSS"

],
"public_key" : "e32tLS1CRUdJTiBSU0FgUFJJVkFURSBLRck..."

}

Providing the encrypted ID of the private keys to Google
l Enable Gmail and provide your user's private key encrypted IDs and certification chains. For

more information, refer to the Google documentation Gmail only: Set up your organization
for client-side encryption.
Certification chains must meet the following Google specifications:
o S/MIME certificate profiles,
o Set up rules to require S/MIME signature and encryption

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 58/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/13069736?sjid=2685394614286330134-EU&hl=fr
https://support.google.com/a/answer/13069736?sjid=2685394614286330134-EU&hl=fr
https://support.google.com/a/answer/7300887#zippy=%2Croot-ca%2Cintermediate-ca-certificates-other-than-from-issuing-intermediate-ca%2Cintermediate-ca-certificate-that-issues-the-end-entity
https://support.google.com/a/answer/7280976?hl=fr&ref_topic=9061730

10.10.3 Using Gmail

l To use Gmail to send encrypted messages to internal or external users, refer to Google
documentation Learn about Gmail Client-side encryption.

10.11 Migrating an external key service to another

If you have an external third-party key service (also known as a KACLS) and you want to
replace it with the KACLS, follow the Google migration procedure. During this procedure, you will
be able to retrieve all your old encrypted data and re-encrypt it to the KACLS.

Before launching the migration, you must choose a backup key service to which old data will
also be encrypted. Google will launch two parallel migrations: encrypted data will be migrated to
the KACLS and to the backup key service.

The KACLS must be configured before migration is enabled in the Google Admin interface.

10.11.1 Configuring migration in the KACLS

1. Generate a pair of RSA keys without password in PEM format with the tool of your choice.
For example with OpenSSL and the following commands:
openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt rsa_
keygen_bits:4096
openssl rsa -pubout -in private_key.pem -out public_key.pem

2. Encode the generated private key in base64 with the following command:
openssl base64 -A -in private_key.pem -out private_key_base64.txt

3. Fill in the "migration" section in the config.json file:
l In the "format" field, specify the PEM key format,
l In the "key" field, enter the private key generated in base64,
l In the "kacls_urls" field, add all the key services with which the Stormshield KMaaS

must communicate, including the backup key service.

"migration": {
 "enabled": true,
 "kaclstokacls_token": {
 "kid": "key_identifier",
 "format": "pem",
 "key": "a_private_key",
 "duration": 3600
 },
 "acls": {
 "kacls_urls": ["https://kacls_1", "https://kacls_2"]
 }
 }

For more information, refer to Configuring the KACLS, in particular the section on
Migration.

4. In the config.json file, fill in the authorization section with information on the
migration, as shown in authorization parameters.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 59/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/mail/answer/13317990

10.11.2 Adding the KACLS in Google

1. In the Google Workspace administration console, add the KACLS as a new key service

2. Select an operational backup key service as well, to which old data will also be encrypted.
This backup key service can be the one that you wish to replace.

For more information, refer to the Google documentation.

10.11.3 Enabling key service migration in Google

1. In the Google Workspace administration console, select the KACLS key service.

2. Enable key service migration.
Google will launch the migration. Refer to the corresponding logs in the KACLS. See the Log
Guide.

For more information, refer to the Google documentation.

The diagram below shows the various stages of the migration to the KACLS and to the backup
key service. In this diagram, the term 'KACLS' refers to a key service.

 NOTE
The tokens generated by the KACLS and provided to another KACLS in the Privileged Unwrap
request are signed using the RS256 algorithm.

10.11.4 Using the backup key service other than for migration service

The backup key service guarantees access to content if an issue arises with the main key
service. It is mandatory in a migration, but you can also use it to test a new key service, for
example. In this case, encrypting data to the backup key service is still considered a migration,
and you must configure the KACLS accordingly:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 60/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://support.google.com/a/answer/12850453?hl=fr&ref_topic=10742486&sjid=1846080474115043884-EU#migrate&zippy=%2Cif-you-want-to-switch-to-a-new-key-service
https://support.google.com/a/answer/12850453?hl=fr&ref_topic=10742486&sjid=1846080474115043884-EU#migrate&zippy=%2Cif-you-want-to-switch-to-a-new-key-service

l Fill in the "migration" section in the config.json file. In the "kacls_urls" field, add the
backup key service.

"migration": {
 "enabled": true,
 "kaclstokacls_token": {
 "kid": "key_identifier",
 "format": "pem",
 "key": "a_private_key",
 "duration": 3600
 },
 "acls": {
 "kacls_urls": ["https://backup_kacls"]
 }
 }

10.12 Customizing the authorization rules

You can customize the rules that allow or deny a request to the Stormshield KMaaS, using Open
Policy Agent (OPA). The policy evaluates the request inputs. If the request is forbidden, the
access is denied and the "403 Forbidden" error is returned.

In the config.json file, the policy_enforcement.enable parameter is mandatory. It allows you to
specify whether you want to enable OPA rules or not.

The inputs relating to all API routes are described in section Inputs relating to all API routes.

The tables below describe the inputs specific to the KACLS.

10.12.1 Inputs specific to the wrap and unwrap API routes

Input Description Source of the
input

authentication.email User's email address.
In UTF8 format, in lower case.

JWT
authentication
token provided by
the IDP.

authentication.googleEmail Optional If the email field is not a Google Workspace
address belonging to the domain, googleEmail is the
user's email address. It takes priority over the email
field.
In UTF8 format, in lower case.

JWT
authentication
token provided by
the IDP.

authentication.iss Entity which has created and signed the token. JWT
authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token was
issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT
authentication
token provided by
the IDP.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 61/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/

Input Description Source of the
input

authentication.iat Date when the token was issued. In timestamp
format (integer)
Example: 1677679386

JWT
authentication
token provided by
the IDP.

authentication.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT
authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
SeeInputs specific to the wrap and unwrap API routes.

JWT
authentication
token provided by
the IDP.

authorization.iss Entity which has created and signed the token.
Can be used to differentiate the various Google
Workspace applications, or to migrate from a KACLS
to another.
Example: “gsuitecse-tokenissuer-
drive@system.gserviceaccount.com”
See Authorization settings.

JWT authorization
token provided by
Google

authorization.role Role of the authorized user.

l "writer" for wrap and unwrap,

l "reader" for unwrap

JWT authorization
token provided by
Google

authorization.aud Corresponds to the audience for which the token was
issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT authorization
token provided by
Google

authorization.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.iat IssuedAt, date when the token was issued.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.emailType Identifies the origin of the e-mail address in the
token.
Prescribed values:

l "google" for Google accounts (default value),

l "google-visitor" for Google-verified accounts,

l "customer-idp" for IDP accounts.

JWT authorization
token provided by
Google

contentType Cryptographic content type.
Prescribed value: "dek"

Cryptographic
component used.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 62/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

10.12.2 Inputs specific to the privilegedwrap and privilegedunwrap API routes

Input Description Source of the input

authentication.email User's email address.
In UTF8 format, in lower case.

JWT authentication
token provided by
the IDP.

authentication.googleEmail Optional If the email field is not a Google Workspace
address belonging to the domain, googleEmail is the
user's email address. It takes priority over the email
field.
In UTF8 format, in lower case.

JWT authentication
token provided by
the IDP.

authentication.iss Entity which has created and signed the token. JWT authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token
was issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT authentication
token provided by
the IDP.

authentication.iat Date when the token was issued. In timestamp
format (integer)
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
SeeInputs specific to the privilegedwrap and
privilegedunwrap API routes.

JWT authentication
token provided by
the IDP.

contentType Cryptographic content type.
Prescribed value: "dek"

Cryptographic
component used.

10.12.3 Inputs specific to the rewrap API route

Input Description Source of the
input

originalKaclsUrl URL of the initial KACLS for a migration. Request body

authorization.email User’s email address. In UTF8 format, in lower case. JWT authorization
token provided by
Google

authorization.role Role of the authorized user: "migrator" JWT authorization
token provided by
Google

authorization.resourceName Same as resourceName, but originates from the
authorization token.

JWT authorization
token provided by
Google

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 63/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Input Description Source of the
input

authorization.kaclsUrl URL of the KACLS. JWT authorization
token provided by
Google

authorization.iss Entity which has created and signed the token.
Can be used to differentiate the various Google
Workspace applications, or to migrate from a KACLS to
another.
Example: “gsuitecse-tokenissuer-
drive@system.gserviceaccount.com”
See Authorization settings.

JWT authorization
token provided by
Google

authorization.aud Corresponds to the audience for which the token was
issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT authorization
token provided by
Google

authorization.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.iat IssuedAt, date when the token was issued.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

10.12.4 Inputs specific to the certs API route

Only endpoint and tenantId inputs are available for the certs API route. For more information,
refer to the section Inputs specific to the certs API route.

10.12.5 Inputs specific to the digest API route

Input Description Source of the
input

authorization.email User’s email address. In UTF8 format, in lower case. JWT authorization
token provided by
Google

authorization.role Role of the authorized user: "check" JWT authorization
token provided by
Google

authorization.resourceName Same as resourceName, but originates from the
authorization token.

JWT authorization
token provided by
Google

authorization.kaclsUrl URL of the KACLS. JWT authorization
token provided by
Google

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 64/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Input Description Source of the
input

authorization.iss Entity which has created and signed the token.
Can be used to differentiate the various Google
Workspace applications, or to migrate from a KACLS to
another.
Example: “gsuitecse-tokenissuer-
drive@system.gserviceaccount.com”
See Authorization settings.

JWT authorization
token provided by
Google

authorization.aud Corresponds to the audience for which the token was
issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT authorization
token provided by
Google

authorization.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.iat IssuedAt, date when the token was issued.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

10.12.6 Inputs specific to the privatekeydecrypt and privatekeysign API routes

Input Description Source of the
input

algorithm Algorithm used to encrypt the private key. Data within the
request body.

authentication.email User's email address.
In UTF8 format, in lower case.

JWT
authentication
token provided by
the IDP.

authentication.googleEmail Optional If the email field is not a Google
Workspace address belonging to the domain,
googleEmail is the user's email address. It takes
priority over the email field.
In UTF8 format, in lower case.

JWT
authentication
token provided by
the IDP.

authentication.iss Entity which has created and signed the token. JWT
authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token
was issued.
Example: ['cse-authorization', 'cse-authorization1'
]

JWT
authentication
token provided by
the IDP.

authentication.iat Date when the token was issued. In timestamp
format (integer)
Example: 1677679386

JWT
authentication
token provided by
the IDP.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 65/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Input Description Source of the
input

authentication.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT
authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
SeeInputs specific to the privatekeydecrypt and
privatekeysign API routes.

JWT
authentication
token provided by
the IDP.

authorization.email User’s email address. In UTF8 format, in lower
case.

JWT authorization
token provided by
Google

authorization.role Role of the authorized user.

l "decrypter" for privatekeydecrypt,

l "signer" for privatekeysign

JWT authorization
token provided by
Google

authorization.resourceName Same as resourceName, but originates from the
authorization token.

JWT authorization
token provided by
Google

authorization.perimeterId Same as perimeterId, but originates from the
authorization token.

JWT authorization
token provided by
Google

authorization.kaclsUrl URL of the KACLS. JWT authorization
token provided by
Google

authorization.iss Entity which has created and signed the token.
Can be used to differentiate the various Google
Workspace applications, or to migrate from a
KACLS to another.
Example: “gsuitecse-tokenissuer-
drive@system.gserviceaccount.com”
See Authorization settings.

JWT authorization
token provided by
Google

authorization.aud Corresponds to the audience for which the token
was issued.
Example: ['cse-authorization', 'cse-authorization1'
]

JWT authorization
token provided by
Google

authorization.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.iat IssuedAt, date when the token was issued.
In timestamp format (integer)
Example: 1677679386

JWT authorization
token provided by
Google

authorization.spkiHashBase64 SPKI hash in base64 to validate authorization. JWT authorization
token provided by
Google

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 66/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Input Description Source of the
input

authorization.spkiHashAlgorithm Encryption algorithm used to produce the SPKI
hash.

JWT authorization
token provided by
Google

authorization.messageId Optional. Value relating to the encryption key used
during a wrapprivatekey operation.

JWT authorization
token provided by
Google

contentType Cryptographic content type.
Prescribed values: "private-key-pem" or "private-
key-name"

Cryptographic
component
configured.

10.12.7 Inputs specific to the wrapprivatekey and privilegedprivatekeydecrypt API
routes

Input Description Source of the input

authentication.email User's email address.
In UTF8 format, in lower case.

JWT authentication
token provided by
the IDP.

authentication.googleEmail Optional if the email field is not a Google Workspace
address belonging to the domain, googleEmail is the
user's email address. It takes priority over the email
field.
In UTF8 format, in lower case.

JWT authentication
token provided by
the IDP.

authentication.iss Entity which has created and signed the token. JWT authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token was
issued.
Example: ['cse-authorization', 'cse-authorization1']

JWT authentication
token provided by
the IDP.

authentication.iat Date when the token was issued. In timestamp
format (integer)
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.exp Date when the token expires.
In timestamp format (integer)
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
SeeInputs specific to the wrapprivatekey and
privilegedprivatekeydecrypt API routes.

JWT authentication
token provided by
the IDP.

contentType Cryptographic content type.
Prescribed values: "private-key-pem" or "private-key-
name"

Cryptographic
component
configured.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
10. KEY ACCESS CONTROL LIST SERVICE(KACLS)

Page 67/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

11. Crypto API
Crypto API provides two API routes, crypto/encrypt and crypto/decrypt. These routes are
designed for general-purpose cryptographic operations, independent of any specific ecosystem

Before performing cryptographic operations, Stormshield KMaaS first checks the authentication
used. It can be either:

l User authentication with a JWT token,
l API_key with a previously declared key.

Crypto API generates logs for all the operations that it performs.

For more information on API routes, see the API documentation.

 NOTE
The use of the solution in any way other than as described in the documentation is not managed.
Alternatively, get in touch with Stormshield Support for clarification.

11.1 Understanding the requirements
l You must generate your KEKs and add them to the keks.json file. For more information, see

Configuring KEKs.
l For information on global requirements and recommendations, refer to section

Understanding the global requirements

11.2 Configuring Crypto API

Crypto API is configured in the crypto_api section of the config.json file. You can configure it
independently for each tenant. For more information on a tenant global configuration, see
Configuring the Stormshield KMaaS.

The template for the crypto_api configuration block is as follows:

"crypto_api": {
 "enable": _IS_CRYPTO_API_ENABLE_,
 "authentication": [

{
 "discovery_uri": "_CRYPTO_API_AUTHENTICATION_DISCOVERY_URI_",
 "client_id": "_CRYPTO_API_AUTHENTICATION_ISSUER_"
 },

{
 "name": "_CRYPTO_API_AUTHENTICATION_API_KEY_NAME",
 "api_key": "_CRYPTO_API_AUTHENTICATION_API_KEY_VALUE"
 }
],
 "policy_enforcement": {
 "enable": false,
 "type": "_POLICY_ENFORCEMENT_TYPE_",
 "opa_server": {
 "url": "_URL_",
 "authentication": {
 "type": "basic",
 "user_id": "_USER_ID_",
 "password": "_PASSWORD_"

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
11. CRYPTO API

Page 68/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://documentation.stormshield.eu/SDS-GW/v4/en/Content/API_doc/index.html

 }
 }
 }
 },
}

Parameter Description Type Optional/
mandatory

enable Enables or disables the CryptoAPI feature,
Crypto API.

Boolean Mandatory to
use the
CryptoAPI
feature.

Authentication parameter

JSON object containing the configuration that allows authenticating to Crypto API. There are two
types of authentication: with OpenID and JWT tokens or API keys.

When using the first method, you must have configured the Identity Provider (IDP) to deliver
JWT tokens with at least these fields: "iss", "aud", "exp", "iat". For more information, see
Configuring the identity provider.

Parameter Description Type Optional/
mandatory

discovery_uri URL to the OpenID JSON configuration file for
the OpenID authentication.

String Mandatory to
use OpenID
authentication.

client_id Recipient of the JWT authentication token
(see RFC 7519).
An entry must be added for each identity
provider.

String Mandatory to
use OpenID
authentication.

name Name of the API key.
The character ‘’:’’ is not allowed. See

RFC 2617.

String Mandatory to
use API Key
authentication.

api_key Value of the API key. Must be a valid API key
provided by Stormshield.

String Mandatory to
use API Key
authentication.

policy_enforcement parameter

JSON object containing the configuration of the optional OPA enforcement feature for Crypto API.
For more information, see Implementing the authorization rules with Open Policy Agent.

Parameter

enable Enable the use of OPA rules for the feature. Boolean Mandatory for each
feature enabled
except the PKI.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
11. CRYPTO API

Page 69/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc2617#section-2

Parameter

type Kind of OPA policy to use.
The possible values are :

l opa_local: this mode uses local files
policy.wasm and policy.data.json. The file
names must be adapted according to the
feature used.

l opa_server: this mode uses a remote OPA
server.

String Mandatory if policy_
enforcement.enable is
set to true

opa_server:
JSON object describing the parameters required to access the OPA policy server. Stormshield guarantees
compatibility with OPA version 1.2.0.

url URL of data API exposed endpoints.
For more information, see OPA
documentation.
Example: If your rego package is
stormshield.kmaas and you have the
allow variable in this package, your url will be:
https://opa-
server/v1/data/stormshield/kmaas/allow
The authorized protocols are http and https.
Stormshield strongly recommends https in
production.

String Mandatory if policy_
enforcement.type is
set to opa_server

authentication JSON object describing the parameters
required to authenticate to the OPA policy
server. It includes the following fields:

l type: Type of authentication used to
connect to the policy server.
The prescribed value is "basic".

l user_id: Identifier of the user account used
to connect to the policy server. Mandatory
if authentication.type is set on "basic"

l password: Password of the user account
used to connect to the policy server.
Mandatory if authentication.type is set on
"basic"

Object Mandatory if type is
set to opa_server

11.3 Customizing the authorization rules

You can customize the rules that allow or deny a request to the Stormshield KMaaS, using Open
Policy Agent (OPA). The policy evaluates the request inputs. If the request is forbidden, the
access is denied and the "403 Forbidden" error is returned.

In the config.json file, the policy_enforcement.enable parameter is mandatory. It allows you to
specify whether you want to enable OPA rules or not.

The inputs relating to all API routes are described in section Inputs relating to all API routes.

The tables below describe the inputs specific to the Crypto API.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
11. CRYPTO API

Page 70/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/rest-api#data-ap
https://www.openpolicyagent.org/docs/rest-api#data-ap
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/

11.3.1 Inputs specific to Crypto API encrypt and decrypt routes

As a Stormshield KMaaS administrator, you can use these inputs to create custom rules to
access Crypto API, for example to filter the application of policies. Use some of these inputs in
the created policy.

Input Description Source of the input

endpoint API routes called: "encrypt", "decrypt" URL of the request

tenantId unique identifier of a tenant in UUID format.
Example: 2363615f-5b08-4119-a5bd-fad3f5f3f420

URL of the request

authentication.authType Type of authentication used for the request. Possible
values :

l token,

l apiKey

"authorization"
header used.

authentication.keyName Name of the API key used to authenticate the
request.
Only present when using "apiKey" authentication.

Name
corresponding to
the key in
configuration.

authentication.iss Entity which has created and signed the token.
Only present when using "token" authentication.

JWT authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token was
issued.
Only present when using "token" authentication.
Example: ['cse-authorization', 'cse-authorization1']

JWT authentication
token provided by
the IDP.

authentication.iat Date when the token was issued. In timestamp
format (integer)
Only present when using "token" authentication.
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.exp Date when the token expires.
In timestamp format (integer)
Only present when using "token" authentication.
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
Only present when using "token" authentication.
See Inputs specific to Crypto API encrypt and
decrypt routes.

JWT authentication
token provided by
the IDP.

Inputs specific to Crypto API decrypt route

Input Description Source of the input

kekId Identifier of the KEK used for data decryption. Body of the
decrypt request, or
ID of the active
KEK if not
specified.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
11. CRYPTO API

Page 71/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Input Description Source of the input

policy Content of the optional policy block included in the decrypt
request body.
You can use it to define ABAC policies using
policy.body.dataAttributes.
It is present only when the policy block is included in the
decrypt request or when using Stormshield SDK.

Body of the
decrypt request.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
11. CRYPTO API

Page 72/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

12. Key Access Service (KAS)
The Key Access Service is a dedicated backend component that manages the cryptographic
keys used for encryption workflows based on Trusted Data Format (TDF). It acts as a secure
intermediary (i.e., key server) that stores, manages, and provides controlled access to
symmetric and asymmetric Key Encryption Keys (KEKs).

The Key Access Service is required to use Stormshield SDK.

It provides the following API routes:

l /rewrap: Enables clients to securely retrieve or re-encrypt keys needed to decrypt protected
data, while enforcing policies and access controls (i.e., asymmetric cryptography).

l /encrypt and /decrypt: Provides direct data encryption and decryption capabilities using a
Key Encryption Key (KEK) for symmetric cryptography.

For more information, refer to the SDK documentation.

 NOTE
The use of the solution in any way other than as described in the documentation is not managed.
Alternatively, get in touch with Stormshield Support for clarification.

12.1 Understanding the requirements
l You must generate your KEKs and add them to the keks.json file:

o For symmetric encryption/decryption, add the KEKs in the keks or encrypted_keks
sections of the file,

o For asymmetric encryption/decryption, add the KEKs in the keys section of the file.

For more information, see Configuring KEKs.

l The Key Access Service feature is not compatible with a KMS.
l For information on global requirements and recommendations, refer to section

Understanding the global requirements

12.2 Configuring the Key Access Service

The Key Access Service is configured in the kas section of the config.json file. You can
configure it independently for each tenant.

The template for the Key Access Service configuration block is as follows:

 "kas": {
 "enable": false,
 "authentication": [

{
 "discovery_uri": "_KAS_AUTHENTICATION_DISCOVERY_URI_",
 "client_id": "_KAS_AUTHENTICATION_ISSUER_"
 },

{
 "name": "_KAS_AUTHENTICATION_API_KEY_NAME",
 "api_key": "_KAS_AUTHENTICATION_API_KEY_VALUE"
 }
],
 "policy_enforcement": {

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
12. KEY ACCESS SERVICE (KAS)

Page 73/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://documentation.stormshield.eu/SDS-GW/v4/en/Content/SDK_doc/index.html

 "enable": false,
 "type": "_POLICY_ENFORCEMENT_TYPE_",
 "opa_server": {
 "url": "_URL_",
 "authentication": {
 "type": "basic",
 "user_id": "_USER_ID_",
 "password": "_PASSWORD_"
 }
 }
 }
 },

Description Type Optional/
mandatory

enable Enables or disables the KAS feature for the
tenant.

Boolean Mandatory to
use the KAS
feature

Authentication parameter

JSON object containing the configuration that allows authenticating to the Key Access Service.
There are two types of authentication: with OpenID and JWT tokens or API keys.

When using the first method, you must have configured the Identity Provider (IDP) to deliver
JWT tokens with at least these fields: "iss", "aud", "exp", "iat". For more information, see
Configuring the identity provider.

Stormshieldrecommends using OpenID authentication whenever possible, as it provides
stronger security guarantees and enables advanced use cases such as ABAC (Attribute-Based
Access Control).

Parameter Description Type Optional/
mandatory

discovery_uri URL to the OpenID JSON configuration file for
OpenID authentication.

String Mandatory to
use OpenID
authentication.

client_id Recipient of the JWT authentication token
(see RFC 7519).
An entry must be added for each identity
provider.

String Mandatory to
use OpenID
authentication.

name Name of the API key.
The character ‘’:’’ is not allowed. See
RFC 2617.

String Mandatory to
use API Key
authentication.

api_key Value of the API key. Must be a valid API key
provided by Stormshield.

String Mandatory to
use API Key
authentication.

policy_enforcement parameter

JSON object containing the configuration of the optional OPA enforcement feature for Key
Access Service. For more information, see Implementing the authorization rules with Open
Policy Agent.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
12. KEY ACCESS SERVICE (KAS)

Page 74/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc2617#section-2

Parameter

enable Enable the use of OPA rules for the feature. Boolean Mandatory for each
feature enabled
except the PKI.

type Kind of OPA policy to use.
The possible values are :

l opa_local: this mode uses local files
policy.wasm and policy.data.json. The file
names must be adapted according to the
feature used.

l opa_server: this mode uses a remote OPA
server.

String Mandatory if policy_
enforcement.enable is
set to true

opa_server:
JSON object describing the parameters required to access the OPA policy server. Stormshield guarantees
compatibility with OPA version 1.2.0.

url URL of data API exposed endpoints.
For more information, see OPA
documentation.
Example: If your rego package is
stormshield.kmaas and you have the
allow variable in this package, your url will be:
https://opa-
server/v1/data/stormshield/kmaas/allow
The authorized protocols are http and https.
Stormshield strongly recommends https in
production.

String Mandatory if policy_
enforcement.type is
set to opa_server

authentication JSON object describing the parameters
required to authenticate to the OPA policy
server. It includes the following fields:

l type: Type of authentication used to
connect to the policy server.
The prescribed value is "basic".

l user_id: Identifier of the user account used
to connect to the policy server. Mandatory
if authentication.type is set on "basic"

l password: Password of the user account
used to connect to the policy server.
Mandatory if authentication.type is set on
"basic"

Object Mandatory if type is
set to opa_server

 EXAMPLE
The content below is provided as an example and must not be used as such in the Stormshield
KMaaS KAS configuration of one of your tenants.

"kas": {
 "enable": true,
 "authentication": [

{

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
12. KEY ACCESS SERVICE (KAS)

Page 75/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/rest-api#data-ap
https://www.openpolicyagent.org/docs/rest-api#data-ap

 "discovery_uri": "https://localhost:4000/static/wrap-private-key/.well-
known/openid-configuration",
 "client_id": "cse-wrapprivatekey"
 }
],
 "policy_enforcement": {
 "enable": true,
 "type": "opa_server",
 "opa_server": {
 "url": "http://localhost:8181/v1/data/stormshield/kas/allow",
 "authentication": {
 "type": "basic",
 "user_id": "admin",
 "password": "admin"
 }
 }
 }
}

12.3 Customizing the authorization rules

You can customize the rules that allow or deny a request to the Stormshield KMaaS, using Open
Policy Agent (OPA). The policy evaluates the request inputs. If the request is forbidden, the
access is denied and the "403 Forbidden" error is returned.

In the config.json file, the policy_enforcement.enable parameter is mandatory. It allows you to
specify whether you want to enable OPA rules or not.

The inputs relating to all API routes are described in section Inputs relating to all API routes.

The tables below describe the inputs specific to the Key Access Service.

12.3.1 Inputs specific to the Key Access Service rewrap, encrypt and decrypt routes

As a Stormshield KMaaS administrator, you can use these inputs to create custom rules to
access the Key Access Service, for example to filter the application of policies. Use some of
these inputs in the created policy.

Input Description Source of the input

endpoint API routes called: "kas/rewrap", "kas/encrypt",
"kas/decrypt"

URL of the request

tenantId unique identifier of a tenant in UUID format.
Example: 2363615f-5b08-4119-a5bd-fad3f5f3f420

URL of the request

authentication.authType Type of authentication used for the request. Possible
values :

l token,

l apiKey

"authorization"
header used.

authentication.keyName Name of the API key used to authenticate the
request.
Only present when using "apiKey" authentication.

Name
corresponding to
the key in
configuration.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
12. KEY ACCESS SERVICE (KAS)

Page 76/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/

Input Description Source of the input

authentication.iss Entity which has created and signed the token.
Only present when using "token" authentication.

JWT authentication
token provided by
the IDP.

authentication.aud Corresponds to the audience for which the token was
issued.
Only present when using "token" authentication.
Example: ['cse-authorization', 'cse-authorization1']

JWT authentication
token provided by
the IDP.

authentication.iat Date when the token was issued. In timestamp
format (integer)
Only present when using "token" authentication.
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.exp Date when the token expires.
In timestamp format (integer)
Only present when using "token" authentication.
Example: 1677679386

JWT authentication
token provided by
the IDP.

authentication.customClaims Optional.
Custom claims provided par the IDP.
Only present when using "token" authentication.
See Inputs specific to the Key Access Service
rewrap, encrypt and decrypt routes.

JWT authentication
token provided by
the IDP.

Inputs specific to the Key Access Service rewrap and decrypt routes

Input Description Source of the input

kekId Identifier of the KEK used for data decryption. Body of the
decrypt request, or
ID of the active
KEK if not
specified.

policy Content of the optional policy block included in the decrypt
request body. The block is optional for the kas/rewrap route,
but mandatory for the kas/decrypt route
You can use it to define ABAC policies using
policy.body.dataAttributes.
It is present only when the policy block is included in the
/kas/rewrap or kas/decrypt requests or when using
Stormshield SDK.

Body of the rewrap
or decrypt request.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
12. KEY ACCESS SERVICE (KAS)

Page 77/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

13. Public Key Infrastructure (PKI)
The PKI consists of:

l A Certificate Authority (CA), which delivers certificates,
l A Registration Authority (RA), which acts as an intermediary between the CA and the end-

users by handling the verification of identity and certificate signature. PKI uses an
automated RA complying to the EST protocol. For more information, refer to the RFC7030
Documentation.

The PKI workflow is as follows:

1. Through an EST API endpoint, .well-known/est/simpleenroll, the users send PKCS#10
Certificate Signing Requests (CSR) to the default PKI engine. A PKI engine is the
combination of a specific CA and RA.

2. The RA engine verifies the CSR information.

3. The CA issues the certificates.

Several PKI engines can be defined for the same tenant in the Stormshield KMaaS configuration
file. However, only a single one, called the default PKI engine, can be used at a time

 WARNING
The PKI is restricted to RSA and ECC algorithms and to the certificate extensions required for
mTLS. For more information refer to section Compatibility of algorithms and CA properties.

 NOTE
The use of the solution in any way other than as described in the documentation is not managed.
Alternatively, get in touch with Stormshield Support for clarification.

13.1 Understanding the requirements
l For information on global requirements and recommendations, refer to section

Understanding the global requirements

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 78/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc7030
https://datatracker.ietf.org/doc/html/rfc7030

l You must have at least one Certification Authority with the following PEM files. Both files
must be stored in the /etc/stormshield/pki/ directory. You can name them as you wish: the
file names in the table are examples.
These files will be referenced in the config.json file. For more information, see Certification
authority (CA) parameters

Description File name
example

Parameter in
config.json

File containing the CA certificate (and its trust chain) which
will issue the users' certificates.

ca_
certificate.pem

full_chain_
certificates_
path

File containing the CA private key used to sign the
certificate issued.
Do not set a password, as private keys with password are
not supported.
No specific key usage is required.

ca_private_
key.pem

key_path

For an example on how to create these files, see Creating a CA with OpenSSL.
For information on supported algorithms, extensions, key usages etc, see Compatibility of
algorithms and CA properties.

13.2 Compatibility of algorithms and CA properties

13.2.1 Algorithms

The current version of the PKI supports the following algorithms:

l RSASSA-PKCS v1.5 and ECDSA with Prime256-V1 for the Certificate Signing Request (CSR),
l RSASSA-PKCS v1.5 for signing the issued certificate with the CA private key. This is the

OpenSSL standard RSA algorithm.

Algorithms CSR CA

RSA (RSASSA-PKCS-v1.5) Supported Supported

EC (ECDSA with Prime256-V1) Supported Not supported

Stormshield recommends using 4096-bit RSA keys (at least 2048 bits) to be as secure as
possible in this context.

l RsaWithSha256, RsaWithSha384 and RsaWithSha512 for the hash.
It is specified in the ca.algorithms.hash configuration parameter of the config.json file.

For more information, refer to Configuring PKI.

13.2.2 CA properties

The certification authority of PKI does not support all attributes and extensions. Unsupported
ones are ignored. The following sections list the supported properties and their expected
behaviors.

Common properties

The second column of the tables contains the Objet Identifier (OID) corresponding to the
property.

A Distinguished Name (DN) is the full identity of a certificate or CSR, and is composed of
multiple attributes such as Country (C), Locality (L), Common Name (CN), etc.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 79/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc8422

The following Distinguished Name attributes are supported:

DN attribute OID

common name 2.5.4.3

surname 2.5.4.4

serial name 2.5.4.5

country name 2.5.4.6

locality name 2.5.4.7

state or province name 2.5.4.8

street address 2.5.4.9

organization name 2.5.4.10

organizational unit name 2.5.4.11

title 2.5.4.12

business category 2.5.4.15

postal code 2.5.4.17

telephone number 2.5.4.20

name 2.5.4.41

given name 2.5.4.42

initials 2.5.4.43

generation qualifier 2.5.4.44

unique identifier 2.5.4.45

distinguished name qualifier 2.5.4.46

pseudonym 2.5.4.65

email address 1.2.840.113549.1.9.1

user id 0.9.2342.19200300.100.1.1

domain component 0.9.2342.19200300.100.1.25

DN attribute OID

common name 2.5.4.3

surname 2.5.4.4

serial name 2.5.4.5

country name 2.5.4.6

locality name 2.5.4.7

state or province name 2.5.4.8

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 80/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

DN attribute OID

street address 2.5.4.9

organization name 2.5.4.10

organizational unit name 2.5.4.11

title 2.5.4.12

business category 2.5.4.15

postal code 2.5.4.17

telephone number 2.5.4.20

name 2.5.4.41

given name 2.5.4.42

initials 2.5.4.43

generation qualifier 2.5.4.44

unique identifier 2.5.4.45

distinguished name qualifier 2.5.4.46

pseudonym 2.5.4.65

email address 1.2.840.113549.1.9.1

user id 0.9.2342.19200300.100.1.1

domain component 0.9.2342.19200300.100.1.25

The following x509 v3 extensions are supported.

Extension OID

basic constraints 2.5.29.19

key usage 2.5.29.15

extended key usage 2.5.29.37

subject key identifier 2.5.29.14

subject alternative name 2.5.29.17

authority key identifier 2.5.29.35

 IMPORTANT
The CA of the PKI does not add its own extensions to the CSR during the certificate issuance
process. It only keeps the CSR supported extensions. It is the administrator’s responsability to
correctly set the required extensions in the CSR OpenSSL configuration.

The tables below indicate whether an extension sub-category is supported:

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 81/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://docs.openssl.org/master/man5/x509v3_config/#description

Basic constraints Supported/Not supported

CA: boolean Supported.
Mandatory with value="true" for root certificates.

pathlen: number Supported.

critical:string Supported.
Mandatory for root certificates.

Key usage Supported/Not supported

decipherOnly Supported

encipherOnly Supported

digitalSignature Supported

nonRepudiation Supported

keyEncipherment Supported

dataEncipherment Supported

keyAgreement Supported

keyCertSign Supported

cRLSign Supported

Extended key usage Supported/Not supported

serverAuth Supported

clientAuth Supported

codeSigning Not supported

emailProtection Not supported

timeStamping Not supported

OCSPSigning Not supported

ipsecIKE Not supported

msCodeInd Not supported

msCodeCom Not supported

msCTLSign Not supported

msEFS Not supported

13.2.3 Other CSR-specific properties

Only mTLS-specific subject alternative names are supported. The others are ignored.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 82/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

Subject alternative names Supported/Not supported

DNS Supported

IP Supported

email Not supported

RID Not supported

dirName Not supported

otherName Not supported

Subject alternative names Supported/Not supported

DNS Supported

IP Supported

email Not supported

RID Not supported

dirName Not supported

otherName Not supported

13.3 Configuring PKI

The PKI is configured in the pki section of the config.json file. You can configure it
independently for each tenant.

The template for the PKI configuration block is as follows:

"pki": {
 "enable": false,
 "default": "_PKI_DEFAULT_PKI_",
 "pki_engines": [

{
 "id": "_PKI_ENGINE_ID_",
 "name": "_PKI_ENGINE_NAME_",
 "ra": {
 "type": "_PKI_ENGINE_RA_TYPE_",
 "authentication": [

{
 "name": "_PKI_RA_API_KEY_NAME",
 "api_key": "_PKI_RA_API_KEY_VALUE"
 }
]
 },
 "ca": {
 "type": "_PKI_ENGINE_CA_TYPE_",
 "key_path": "_PKI_ENGINE_KEY_PATH_",
 "full_chain_certificates_path": "_PKI_ENGINE_CERT_CHAIN_PATH_",
 "certificate_signature": {
 "algorithms": {
 "hash": "_PKI_ENGINE_HASH_ALGO_",
 "signature": "_PKI_ENGINE_SIGNATURE_ALGO_"
 },
 "parameters": {

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 83/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

 "salt_length": 20
 }
 },
 "certificate_profiles": {
 "validity_period": 31536000
 }
 }
 }
]
 },

Description Type Optional/
mandatory

enable Enables or disables the PKI for the tenant. Boolean Mandatory to
use the PKI
feature

default Identifier of the tenant default PKI engine. It
must match one of the id parameter of the pki_
engines object. It is used as the default PKI
engine configuration.

String Mandatory

pki_engines:
JSON object array containing the list of all PKI engines as JSON objects.

id Unique identifier of the PKI engine in UUIDv4
format.

String Mandatory

name Name of the PKI engine. String Mandatory

ra:
JSON object containing the registration authority configuration. For more details, see the table below.

ca:
JSON object containing the certification authority configuration. For more details, see the table below.

Registration authority (RA) parameters

Parameter Description Type Optional/
mandatory

type Type of registration autority.
The only prescribed value is "est".

String Mandatory

authentication:
JSON object containing the list of API keys.

name Name of the API key.
The character ‘’:’’ is not allowed. See RFC 2617.

String Mandatory

api_key Value of the API key. String Mandatory

Certification authority (CA) parameters

Parameter Description Type Optional/
mandatory

type Type of the certification authority.
The only prescribed value is "local".

String Mandatory

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 84/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://datatracker.ietf.org/doc/html/rfc2617#section-2

Parameter Description Type Optional/
mandatory

key_path Path to the CA private key in PEM
format. See Configuring PKI.

String Mandatory

full_chain_certificates_
path

Path to the CA certificate chain in
PEM format. See Configuring PKI.

String Mandatory

certificate_signature:
JSON object containing the metadata for the signature of the certificate signing request (CSR) by the CA.

algorithms Signature algorithm.
It includes the following fields:

l signature: The only prescribed
value is "rsassa_pkcs1_v1_5",

l hash: The prescribed values are
"sha-256" or "sha-384", and "sha-
512".

See Algorithms.

String Mandatory

parameters Metadata for specific algorithms.
It includes the following field:

l salt_length: RSA-PSS specific
signature parameter to improve
security (Not used).

Integer Optional

certificate_profiles:
Metadata of the certificate profile.

validity_period Validity period of issued certificate
in seconds. The minimum is 1, and
the maximum is 2 147 483 647
seconds (68 years). A typical value
is 31 536 000 seconds (1 year).

Integer Mandatory

 EXAMPLE
The content below is provided as an example and must not be used as such in the Stormshield
KMaaS PKI configuration of one of your tenants.

"pki": {
 "enable": true,
 "default": "8e071476-01a2-44e8-90f3-be94d2de46ef",
 "pki_engines": [

{
 "id": "8e071476-01a2-44e8-90f3-be94d2de46ef",
 "name": "pki_name",
 "ra": {
 "type": "est",
 "authentication": [

{
 "name": "testApiKey",
 "api_key": "VW0FmFl73leUkYGBCr8DjlFcZBt6en5p"
 }
]
 },

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 85/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

 "ca": {
 "type": "local",
 "key_path": "/etc/stormshield/pki/ca_private_key.pem",
 "full_chain_certificates_path": "/etc/stormshield/pki/ca_certificate.pem",
 "certificate_signature": {
 "algorithms": {
 "hash": "sha-256",
 "signature": "rsassa_pkcs1_v1_5"
 },
 "parameters": {
 }
 },
 "certificate_profiles": {
 "validity_period": 3153600
 }
 }
 }
]
}

13.4 Issuing certificates

Before certificates can be issued, you must:

l Set up the CA configuration for the tenant. See Configuring PKI.
l Make sure that the CA chain is trusted.

13.4.1 Issuing a standard certificate

1. Create a CSR. The only mandatory attribute is the Common Name.
For an example of CSR creation with OpenSSL, see Issuing a mTLS certificate with a CSR.

2. POST the CSR content to the URI/{tenantId}/.well-known/est/simpleenroll endpoint with the
following headers:
l Content-Type must be application/pkcs10,
l Content-Transfer-Encoding must be base64.

 NOTE
The PKI supports CSR content with or without PEM PKCS#10 headers/footers, and with
or without line breaks.

If the operation is successful, the response, Content-Type : application/pkcs7-
mime, is a base64 string in PEM style (line breaks every 76 characters), containing the
issued certificate in PKCS#7.
If it fails, the response if Content-Type : application/json and contains an error
JSON object.

 NOTE
PKCS#7 is a widely supported cryptographic message syntax mandated by the EST
protocol. It allows to return in a compact way multiple certificates, e.g., the whole
certificate chain, in addition to the newly issued certificate, and also other metadata if
necessary.

For more information on the API routes, see the API Documentation.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 86/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://documentation.stormshield.eu/SDS-GW/v4/fr/Content/API_doc/index.html

13.4.2 Issuing a certificate with common name override

The PKI allows generating a CSR before the final common name is known.

If the Common Name specified in the CSR is not suitable, you can override it by adding the x-
override-cn header in the /simpleenroll API call. The certificate issued will contain the Common
Name specified in the header.

The Common Name in the x-override-cn header must:

l be a non-empty string when the header is defined,
l have less than 64 characters,
l contain only these characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_.~!#
$''"()*+,/:;=?@[] %
and/or the following percent-encoding characters:
%20%21%22%23%24%25%27%28%29%2A%2B%2C%2F%3A%3B%3D%3F%40%5B%5D

For more information on the API routes, see the API Documentation.

13.5 Testing use cases with OpenSSL

13.5.1 Creating a CA with OpenSSL

1. Create the ca_certificate_config.cnf OpenSSL configuration file for the certification authority
(CA):

[req]
default_bits = 4096
default_keyfile = ca_private_key.pem
distinguished_name = req_distinguished_name
x509_extensions = req_ext
prompt = no

[req_distinguished_name]
CN = your CA Name
C = your country
L = your locality
O = your organization

[req_ext]
basicConstraints = critical, CA:true
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

2. Generate the RSA private key:
openssl genpkey –des3 -algorithm RSA -out ca_private_key.pem \-
pkeyopt rsa_keygen_bits:4096

3. Extract the public key:
openssl rsa -in ca_private_key.pem -pubout -out ca_public_key.pem

4. Generate an autosigned root certificate (10-year validity period):
openssl req -x509 -new -key ca_private_key.pem -out ca_
certificate.pem -days 3650 \-config ca_certificate_config.cnf

5. Check the root certificate:
openssl x509 -in ca_certificate.pem -text -noout

6. Move the certificate file (ca_certificate.pem) and the private key (ca_private_key.pem) to the
/etc/stormshield/pki directory.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 87/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://documentation.stormshield.eu/SDS-GW/v4/fr/Content/API_doc/index.html

13.5.2 Issuing a mTLS certificate with a CSR

1. Generate the related mtls_client_csr.cnf CSR configuration file:

[req]
distinguished_name = req_distinguished_name
req_extensions = req_ext
string_mask = utf8only
prompt = no

[req_distinguished_name]
C = your country
L = your locality
O = your organization
CN = your common name

[req_ext]
keyUsage = critical, digitalSignature, keyEncipherment,
keyAgreementextendedKeyUsage = serverAuth, clientAuth
basicConstraints = critical

2. Generate the CSR private key:
openssl genpkey -algorithm RSA -out mtls_client_private_key.pem \
-pkeyopt rsa_keygen_bits:4096
The certification authority (CA) private keys are extremely sensitive items in terms of
security. You must follow the ANSSI recommendations concerning their life cycles.

3. Generate the CSR:
openssl req -new -key mtls_client_private_key.pem \-out mtls_
client.csr -config mtls_client_csr.cnf -extensions req_ext

4. Check the CSR:
openssl req -text -noout -in mtls_client.csr

5. POST the mtls_client.csr content to the URI/{tenantId}/.well-known/est/simpleenroll
endpoint with the following headers:
l Content-Type must be application/pkcs10,
l Content-Transfer-Encoding must be base64.

The response, Content-Type : application/pkcs7-mime, is a base64 string in PEM
style (line breaks every 76 characters), containing the issued certificate in PKCS#7.

6. If the PKCS#7 content was saved in a mtls_client_certificate.p7 file, extract the issued
certificate using these OpenSSL commands:
openssl base64 -d -in mtls_client_certificate.p7 | \openssl pkcs7
-inform DER -outform PEM -print_certs \-out mtls_client_
certificate.pem

7. Use both mtls_client_private_key.pem and mtls_client_certificate.pem in the HTTPS agent of
your service or with CURL to activate mTLS authentication.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
13. PUBLIC KEY INFRASTRUCTURE (PKI)

Page 88/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://cyber.gouv.fr/le-referentiel-general-de-securite-version-20-les-documents

14. Implementing the authorization rules with
Open Policy Agent

You can customize the rules that allow or deny a request to the Stormshield KMaaS, using Open
Policy Agent (OPA). The policy evaluates the request inputs. If the request is forbidden, the
access is denied and the "403 Forbidden" error is returned.

 EXAMPLE
You can define a policy allowing access to the Stormshield KMaaS only to users from the
stormshield.eu domain.

You can add an OPA policy to the following API routes. If you specify rules for other routes, they
will be ignored.

l wrap, unwrap, privilegedwrap, privilegedunwrap, rewrap, certs, digest, wrapprivatekey,
privatekeydecrypt, privilegedprivatekeydecrypt,privatekeysign, encrypt, decrypt, and
rewrap.

The policy enforcement is configured for each tenant and feature (i.e., KACLS, Crypto API, KAS).
For more information, refer to sections:

l Configuring the KACLS
Customizing the authorization rules

l Configuring Crypto API
Customizing the authorization rules

l Configuring the Key Access Service
Customizing the authorization rules

The diagram below indicates at which stage of the requests the OPA policy is applied for the
"wrap" and "unwrap" requests.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 89/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/

14.1 Defining an OPA policy

There are two different OPA modes, local and server.

14.1.1 Local OPA mode

With the local OPA mode, the users use the local files located in the /etc/stormshield/cse
directory.

If using Stormshield KMaaS on several instances, you must apply the following procedure on all
instances.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 90/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

1. Edit the two files needed to define a policy for the feature you are implementing: the KACLS,
Crypto API, or Key Access Service:

Feature File name Description

KACLS policy.wasm l This file defines the policy rules, based on
request inputs

l It is generated from a rego file,

l Use the OPA command line tool to generate it,

l Use The rego Playground to develop and test
a policy.

Crypto API policy-crypto-api.wasm

KAS policy-kas.wasm

KACLS policy.data.json l This file contains data that can be referenced
in the rego file.

l It makes it possible to add variables to the
policy.wasm file so that you do not to have to
recompile the file each time you modify it.

Crypto API policy-crypto-
api.data.json

KAS policy-kas.data.json

In RPM mode, both these files already exist in /etc/stormshield/cse only for the KACLS.
They define a default policy which allows all requests. If you want to create your own
policy, customize these files using the inputs and the examples provided in the following
sections.
In Docker mode, these default policy files are provided along with the Docker image. You
can place them in the folder containing your configuration files, or define your own.

The .wasm and .json files are mandatory if the policy_enforcement.enable parameter value
is set to true and if the type is opa_local in the config.json file. For more information, see
Configuring the KACLS Configuring Crypto API, or Configuring the Key Access Service.
If one of the files is not present and the parameter value is set to true, the service will not
start and the corresponding feature (i.e., KACLS, Crypto API or KAS) will be disabled. A log is
also issued to indicate that the policy is disabled.

2. Run the restart command to take into account the modified .wasm and .json files. If one of
the files is not valid, the service does not start and a log is issued. For more information,
refer to the section the Log Guide.

14.1.2 OPA Server

With the OPA server mode, the users contact an OPA server to get the result of an online policy.
This mode allows you to centralize the policy and avoids duplicating the file on several
instances in the case of a multi-instance architecture.

With this mode, you must implement the verification of Basic authentication, either via the tools
provided by OPA or via another method such as a gateway.

To use this mode in your configuration, in the config.json file, section policy_enforcement, set
the type parameter to opa_server for the KACLS, Crypto API, or the Key Access Service.

For more information, refer to sections Configuring the KACLS, Configuring Crypto API or
Configuring the Key Access Service.

To configure the policies on your OPA server, refer to the OPA Rest API documentation .
Stormshield guarantees compatibility with OPA version 1.2.0.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 91/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/#running-opa
https://play.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/rest-api/

14.2 Inputs relating to all API routes

These inputs are meant to create customized rules to access the Stormshield KMaaS. Use them
to filter the application of policies.

You can use these inputs in the custom policy.

Input Description Source of the input

endpoint API routes called: "wrap", "unwrap", "privilegedwrap",
"privilegedunwrap", "rewrap", "certs", "wrapprivatekey",
"privilegedprivatekeydecrypt", "digest",
"privatekeydecrypt", "privatekeysign", "encrypt", "decrypt",
"kas/encrypt", "kas/decrypt" and "kas/rewrap".

URL of the request

tenantId unique identifier of a tenant in UUID format.
Example: 2363615f-5b08-4119-afdb-fad3f5f3f420.

URL of the request

perimeterId Optional. Value relating to the key used to wrap a DEK. Data encapsulated
in the DEK within
the request body

resourceName Unique identifier of the object encrypted by the DEK. Data encapsulated
in the DEK within
the request body

reason String containing a JSON object. Not currently used. Request body

14.3 Example of policy implementation

In this example, a rule is added which allows only the users present in the authorizedUsers list
to perform a request for the 'unwrap' route used for Google Drive.

In the policy.rego file:

l input refers to the data provided by the Stormshield KMaaS to the policy.
l data refers to the data in the policy.data.json file.

Once the policy.rego file has been compiled into policy .wasm using via the OPA tool, you can
add or remove authorized users by updating the content of the authorizedUsers field in the
policy.data.json file.

In this example, a user with an email address in the authentication token 'user1@test.com' or
'user2@test.com' will be allowed to use the 'unwrap' route to decrypt a Google Drive document,
whereas other users will not be allowed to do so. Other users will be allowed to use the
"unwrap" route if it does not imply Google Drive.

The .rego examples provided in this documentation use a syntax that is still supported by OPA
but is no longer the recommended style. These examples are not meant for writing production
policies. Stormshield recommends following the official OPA documentation, which reflects the
most up-to-date best practices.

14.3.1 policy.rego file

package cse

import future.keywords.if

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 92/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://www.openpolicyagent.org/docs/latest/#running-opa
https://www.openpolicyagent.org/

import future.keywords.in

--

Deny by default
default allow := false

Allow all other endpoints
allow if {
input.endpoint != "unwrap"
}

Allow access to unwrap endpoint if not concerning drive application
allow if {
input.endpoint == "unwrap"
input.authorization.iss != "gsuitecse-tokenissuer-drive@system.gserviceaccount.com"
}

Allow access to unwrap concerning drive, only for authorizedUsers
allow if {
input.endpoint == "unwrap"
input.authorization.iss == "gsuitecse-tokenissuer-drive@system.gserviceaccount.com"
input.authentication.email in data.authorizedUsers
}

14.3.2 policy.data.json file

{
"authorizedUsers": ["user1@test.com", "user2@test.com"]
}

14.4 Using custom claims

Authentication and authorization tokens may contain user data (claims) that are not required
by the Stormshield KMaaS.

Such data is placed in a “customClaims” object and can be used in an OPA policy file.

For example, the Stormshield KMaaS may get an authentication token of the following form:

{
 iss: 'issuer-authentication',
 aud: 'cse-authentication' ,
 exp: 1731599885,
 iat: 1728917885,
 email: 'user@domain.com',
 user_age: 23
 }

The "user_age" property is not required by the Stormshield KMaaS. However, it will be
transmitted to OPA in a “customClaims” object, as follows:

{

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 93/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

 iss: 'issuer-authentication',
 aud: 'cse-authentication' ,
 exp: 1731599885,
 iat: 1728917885,
 email: 'user@domain.com',
 customClaims: {
 user_age: 23
 }
 }

You can use the "user_age" property in the policy.rego file, using the customClaims.{key}
syntax. In the example below, access is restricted to users over the age of 18:

package cse
import future.keywords.if

Deny by default
default allow := false

Allow access if age is more than 18
allow if {
 input.authentication.customClaims.user_age >= 18
}

14.5 Using Attribute-based access control (ABAC)

Attribute-based access control (ABAC) is an authorization model that evaluates attributes,
rather than roles, to determine access. For instance, with ABAC, the policy server can grant or
deny decryption based on attributes contained in the authentication JWT token issued by the
identity provider (e.g., user location, age, data sensitivity).

The IDP compares the following attributes:

l The custom claims delivered to the user by the IDP in the authentication JWT token,
l The attributes of the 'decrypt' route (i.e., body dataAttributes). The attributes can be either

attached to the data in the Stormshield SDK or sent along with the data request using the
optional "policy" property.

If the attributes do not match, access is denied and the user is not allowed to decrypt the data.

The policy.rego file below is an example of ABAC policy on the 'decrypt' route that compares the
location custom claim of the authentication JWT token and the location attribute in the request:

package cse
import future.keywords.if

Deny by defaultdefault
allow := false

Allow all routes except decrypt
allow if {
 not input.endpoint in ["decrypt"]
}

allow if {
 input.endpoint in ["decrypt"]
 some attribute in input.policy.body.dataAttributes
 attribute.location == input.authentication.customClaims.location

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 94/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

}

In this example, if:

l the 'decrypt' request contains the attribute location:France,
l the JWT token contains the custom claim location:France,

then, decryption is allowed.

However, if:

l the 'decrypt' request contains the attribute location:France,
l the JWT token contains the custom claim location:Germany

then, decryption is denied.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
14. IMPLEMENTING THE AUTHORIZATION RULES WITH OPEN POLICY AGENT

Page 95/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

15. Managing logs
The Stormshield KMaaS generates logs for every operation, making it possible to trace all
operations performed and potential issues. Logs are generated in JSON format. In RPM mode,
the logs are managed by the systemd service.

There are two different log formats:

l Refer to the Stormshield KMaaS Log Guide (v1 format) guide for more information on logs in
the old format.

l Refer to the to the Stormshield KMaaS Log Guide for more information on logs in the new
format.

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
15. MANAGING LOGS

Page 96/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

16. Further reading
Additional information and answers to questions you may have about Stormshield KMaaS are
available on the Documentation website and in the Stormshield knowledge base
(authentication required).

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5
16. FURTHER READING

Page 97/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

https://documentation.stormshield.eu/
https://kb.stormshield.eu/en/data-security/for-google-workspace

Page 98/98 sds-en-sds-kmaas-administration_guide-v4.5 - 10/16/2025

STORMSHIELD KMAAS - ADMINISTRATION GUIDE - V 4.5

documentation@stormshield.eu

All images in this document are for representational purposes only, actual products may differ.

Copyright © Stormshield 2025. All rights reserved. All other company and product names
contained in this document are trademarks or registered trademarks of their respective
companies.

	1. Getting started
	2. Understanding the global requirements
	2.1 Requirements
	2.2 Recommendations on administrators
	2.3 Recommendations on network rules

	3. Installing and running Stormshield KMaaS
	3.1 Installing the Stormshield KMaaS via a Docker image
	3.1.1 Requirements
	3.1.2 Knowing the contents of the Docker image archive
	3.1.3 Loading Docker

	3.2 Running Stormshield KMaaS in Docker mode
	3.2.1 Requirements
	3.2.2 Starting a container

	3.3 Installing the Stormshield KMaaS via RPM
	3.3.1 Requirements
	3.3.2 Compatibility
	3.3.3 Installing the operating system
	3.3.4 Installing OpenSSL
	3.3.5 Installing NodeJS
	3.3.6 Installing the Stormshield KMaaS

	3.4 Running Stormshield KMaaS in RPM mode
	3.5 Checking system health

	4. Uninstalling the Stormshield KMaaS
	4.1 In Docker mode
	4.2 In RPM mode

	5. Configuring the Stormshield KMaaS
	5.1 Creating the global configuration file
	5.2 Assigning access privileges to the file
	5.3 Editing the global configuration file
	5.3.1 Simple parameters
	5.3.2 tenants parameter
	5.3.3 authorization parameters
	5.3.4 https parameter
	5.3.5 keks parameter
	5.3.6 kmip_configuration parameters
	5.3.7 cache parameter
	5.3.8 logs parameters

	6. Configuring KEKs
	6.1 Configuring KEKs in standalone mode
	6.1.1 Generating KEKs
	6.1.2 Preparing the key encryption key file
	6.1.3 Adding KEKs to the file
	6.1.4 Renewing a symmetric encryption KEK

	6.2 Configuring symmetric encryption KEKs in KMS mode
	6.2.1 Requirements
	6.2.2 Generating symmetric encryption KEKs in the KMS
	6.2.3 Renewing KEKs in the KMS

	7. Using the Stormshield KMaaS in secure mode (HTTPS, KMS)
	7.1 Configuring TLS ciphers
	7.1.1 Modifying the list of TLS ciphers in Docker mode
	7.1.2 Modifying the TLS cipher list in RPM mode

	8. Configuring proxy access
	8.1 In Docker mode
	8.2 In RPM mode

	9. Backing up and restoring the Stormshield KMaaS files
	9.1 Backing up Stormshield KMaaS files
	9.2 Restoring the files in Docker mode
	9.3 Restoring the files in RPM mode

	10. Key Access Control List Service (KACLS)
	10.1 Understanding the requirements
	10.1.1 Global requirements and recommendations on administrators and network rules
	10.1.2 Network requirements

	10.2 Deploying the KACLS infrastructure
	10.2.1 Setting up the Stormshield KMaaS in Google Workspace

	10.3 Configuring the KACLS
	10.4 Checking system health
	10.5 Configuring the identity provider
	10.5.1 Specifying the redirect URL
	10.5.2 Retrieving import values
	10.5.3 Managing authentication tokens

	10.6 Configuring Google Workspace Client-side encryption
	10.6.1 Specifying the External key service
	10.6.2 Specifying the identity provider (IDP)

	10.7 Using remote authentication
	10.8 Using the KACLS with Drive, Meet and Calendar
	10.8.1 Importing sensitive external files to Google Drive (Beta)
	10.8.2 Enabling Google Meet hardware use
	10.8.3 Enabling external user access for Google Drive and Google Meet
	10.8.4 Enabling the use of a Google application via a remote file
	10.8.5 Enabling the use of a Google application in the local configuration

	10.9 Decrypting files and emails
	10.10 Using the KACLS with Gmail
	10.10.1 Using Gmail in standard mode
	10.10.2 Using Gmail in advanced mode based on a KMS
	10.10.3 Using Gmail

	10.11 Migrating an external key service to another
	10.11.1 Configuring migration in the KACLS
	10.11.2 Adding the KACLS in Google
	10.11.3 Enabling key service migration in Google
	10.11.4 Using the backup key service other than for migration service

	10.12 Customizing the authorization rules
	10.12.1 Inputs specific to the wrap and unwrap API routes
	10.12.2 Inputs specific to the privilegedwrap and privilegedunwrap API routes
	10.12.3 Inputs specific to the rewrap API route
	10.12.4 Inputs specific to the certs API route
	10.12.5 Inputs specific to the digest API route
	10.12.6 Inputs specific to the privatekeydecrypt and privatekeysign API routes
	10.12.7 Inputs specific to the wrapprivatekey and privilegedprivatekeydecrypt API routes

	11. Crypto API
	11.1 Understanding the requirements
	11.2 Configuring Crypto API
	11.3 Customizing the authorization rules
	11.3.1 Inputs specific to Crypto API encrypt and decrypt routes

	12. Key Access Service (KAS)
	12.1 Understanding the requirements
	12.2 Configuring the Key Access Service
	12.3 Customizing the authorization rules
	12.3.1 Inputs specific to the Key Access Service rewrap, encrypt and decrypt routes

	13. Public Key Infrastructure (PKI)
	13.1 Understanding the requirements
	13.2 Compatibility of algorithms and CA properties
	13.2.1 Algorithms
	13.2.2 CA properties
	13.2.3 Other CSR-specific properties

	13.3 Configuring PKI
	13.4 Issuing certificates
	13.4.1 Issuing a standard certificate
	13.4.2 Issuing a certificate with common name override

	13.5 Testing use cases with OpenSSL
	13.5.1 Creating a CA with OpenSSL
	13.5.2 Issuing a mTLS certificate with a CSR

	14. Implementing the authorization rules with Open Policy Agent
	14.1 Defining an OPA policy
	14.1.1 Local OPA mode
	14.1.2 OPA Server

	14.2 Inputs relating to all API routes
	14.3 Example of policy implementation
	14.3.1 policy.rego file
	14.3.2 policy.data.json file

	14.4 Using custom claims
	14.5 Using Attribute-based access control (ABAC)

	15. Managing logs
	16. Further reading

